Призрачные цели электромагнитного оружия. Винтовка электромагнитная


Электромагнитная винтовка Гаусса

В свое время такое устройство, как винтовка Гаусса, получило большое распространение в среде писателей-фантастов и разработчиков компьютерных игр. Ее часто применяют непобедимые герои романов, и именно она обычно является самым мощным оружием в компьютерных играх. Однако на самом деле винтовка Гаусса практически не нашла применения в современном мире, и это связанно в основном с особенностями ее конструкции.

Дело в том, что в основе действия такой винтовки - принцип ускорения массы на основе бегущего магнитного поля. Для этого используют соленоид, в который помещают ствол винтовки, причем он должен быть изготовлен из диэлектрика. Снаряды же винтовка Гаусса использует только те, что изготовлены из ферромагнетика. Таким образом, при подаче тока на соленоид в нем появляется магнитное поле, которое притягивает снаряд внутрь. При этом импульс должен быть очень мощным и кратковременным (чтобы "разогнать" снаряд до максимальной скорости и при этом не затормозить его внутри соленоида).

Такой принцип действия дает модели преимущества, которые недоступны для многих других видов стрелкового вооружения. Она не требует наличия гильз, отличается небольшой отдачей, которая равна импульсу вылетающего снаряда, обладает большим потенциалом бесшумной стрельбы (при наличии достаточно обтекаемых снарядов, начальная скорость которых не будет превышать скорость звука). При этом такая винтовка дает возможность вести стрельбу практически в любых условиях (как говорят, даже в открытом космосе).

И, конечно же, множество "умельцев" ценят то, что винтовка Гаусса своими руками в домашних условиях вполне может быть собрана фактически "из ничего".

Однако некоторые конструктивные особенности и принципы действия, которые характерны для такого изделия, как Гаусс-винтовка, имеют и отрицательные стороны. Самая главная из них - низкий КПД, который использует от 1 до 10 процентов энергии, переданной конденсатором на соленоид. При этом множественные попытки исправить этот недостаток не принесли существенного результата, а только повысили КПД модели до 27%. Все остальные недостатки, которые имеет винтовка Гаусса, вытекают именно из маленького КПД. Винтовке требуется большое количество энергии для эффективной работы, также она имеет громоздкий вид, большие габариты и вес, а процесс перезарядки довольно длителен.

Выходит, что недостатки такого вида оружия, как винтовка Гаусса, перекрывают большую часть его достоинств. Возможно, с изобретением сверхпроводников, которые можно будет отнести к классу высокотемпературных, и появлением компактных и мощных источников питания это оружие снова привлечет внимание ученых и военных. Хотя большинством практиков считается, что к этому времени будут существовать другие типы оружия, намного превосходящие винтовку Гаусса.

Единственной областью применения данного вида оружия, рентабельной уже в наше время, являются космические программы. Правительства большинства космических держав планировали использовать винтовку Гаусса для установки на космических шаттлах или спутниках.

загрузка...

buk-journal.ru

Стращай, оружие - МК Уфа

Школьник сделал винтовку, над которым бились лучшие умы военных

12.07.2010 в 17:01, просмотров: 7693

Свое изобретение — электромагнитную винтовку — восьмиклассник Максим Котельников представил на Всероссийском молодежном образовательном форуме «Молодые интеллектуалы России» и занял там первое место.

Максим Котельников и его электромагнитная винтовка.

Схемами создания подобного оружия пестрят многие интернет-сайты, ориентированные на людей, увлекающихся электроникой. Однако разработкой именно уфимского юного гения заинтересовались ученые Министерства обороны.

Во время летних каникул подростка пригласили в Москву. Там он соберет для военных три образца электромагнитного оружия, и если их испытания признают удачными, эти винтовки, возможно, поступят на вооружение Российской армии. По крайней мере, подростку намекнули на это. — Самый главный плюс электромагнитного оружия, в отличие от классического, — его бесшумность, отсутствие отдачи и вспышки пороховых газов, — объясняет Максим. — Таким образом, подобная винтовка становится идеальной, скажем, для снайпера.

Разработкой винтовки, которую юный изобретатель назвал "пушкой Гаусса", он занимался самостоятельно, без научного руководителя. 13-летний школьник собрал супер-оружие из страйкбольного пистолета и электрической схемы. На взгляд дилетанта — куча конденсаторов и несколько электромагнитных катушек. Между тем подросток уверенно объясняет принцип работы изобретения: — Это — как андронный коллайдер, только в миниатюре. Если коллайдер разгоняет частицы, то мой аппарат разгоняет пулю и на огромной скорости выкидывает ее в дуло. Пуля в привычном понимании здесь не нужна, как, впрочем, порох и гильзы. Электромагнитная винтовка может стрелять даже гвоздями, любым материалом, который притягивается магнитом. Если попроще, то, когда мы нажимаем курок, запускаем электромагнит, он притягивает к себе пулю, которая разгоняется. Потом импульс автоматически прерывается, а пуля продолжает лететь дальше. Чем больше таких магнитов использовать, тем сильнее можно разогнать пулю и тем выше будет убойная сила.

К сожалению, проверить слова Максима не получилось: винтовку мальчик возил на форум «Молодые интеллектуалы России» в Санкт-Петербург. А когда летел обратно, ее пришлось разобрать — ведь с оружием в самолет не пускают. — Чтобы снова собрать всю схему, мне понадобится неделя, — объясняет юный Кулибин. — Только потом я смогу продемонстрировать, как она работает. Пуля, выпущенная из этой винтовки, насквозь пробивает деревянную дверь — я проверял.

Идею создать идеальное оружие Максим подглядел в телевизоре. Говорит, сильно удивился, что над разработкой электромагнитного арсенала сегодня бьются только американцы и китайцы. — А мы чем хуже? Я начал искать статьи в интернете и сразу наткнулся на кучу материалов на эту тему, — вспоминает школьник. Дальше — дело техники. Первый экземпляр орудия оказался слишком большим и тяжелым — под 20 килограмм. Дальше мальчик стал ломать голову над тем, как уменьшить вес и габариты своего изобретения. Так появилась винтовка. Кстати, подобные электромагнитные пушки (или, как их еще называют, бластеры) часто упоминаются в фантастических книгах. Максим уверен, что фантастика — не вымысел, а будущее, к которому мы скоро придем.

Школьный учитель физики, которому мальчик показал свою разработку, был просто шокирован. Зато идея Максима сразу покорила директора 155-й школы Ирину Ибрагимову. Она и включила талантливого юного конструктора в список участников форума «Молодые интеллектуалы» в Санкт-Петербурге. И не прогадала: Котельников привез оттуда высшую награду, а школа получила гран-при. Но в этом заслуга не только Максима, но и других учеников школы, которые тоже провели ряд интересных опытов. Например, девятиклассник Владислав Станишевский поставил эксперимент над рыбками. Он добавлял в воду кока-колу, быстрорастворимый суп и другие продукты и наблюдал, как это влияет на подопытных.

Но именно разработка Максима Котельникова стала открытием форума. После доклада об изобретении, уровень которого соответствует студенческой курсовой работе, Максим получил предложение о прохождении практики на базе одного из вузов Санкт-Петербурга.

К винтовке Котельникова проявили интерес и представители Минобороны. Дело в том, что до последнего времени конструкторам не удавалось создать такой экземпляр электромагнитного оружия, который бы одновременно сочетал в себе маленькие размеры и убойную силу. Скажем, разработанная американцами электромагнитная пушка установлена на корабле, потому что требует для своей работы огромный источник энергии, а электромагнитные орудия размером с обычную винтовку выстреливают не дальше десяти метров. Каким образом обыкновенному уфимскому школьнику удалось создать компактную винтовку, способную соперничать с обычным огнестрельным орудием, — большая загадка. И, возможно, чтобы разгадать ее, мальчика пригласили летом в научный центр Минобороны. А Максим давно мечтает стать военным.

ufa.mk.ru

Электромагнитная винтовка Гаусса

В свое время такое устройство, как винтовка Гаусса, получило огромное распространение в среде писателей-фантастов и разработчиков компьютерных игр. Ее нередко используют непобедимые герои романов, и конкретно она обычно является самым массивным орудием в компьютерных играх. Но по сути винтовка Гаусса фактически не отыскала внедрения в современном мире, и это связанно в главном с особенностями ее конструкции.

Дело в том, что в базе деяния таковой винтовки — принцип ускорения массы на базе бегущего магнитного поля. Для этого употребляют соленоид, в который помещают ствол винтовки, при этом он должен быть сделан из диэлектрика. Снаряды же винтовка Гаусса употребляет только те, что сделаны из ферромагнетика. Таким макаром, при подаче тока на соленоид в нем возникает магнитное поле, которое притягивает снаряд вовнутрь. При всем этом импульс должен быть очень массивным и краткосрочным (чтоб «разогнать» снаряд до наибольшей скорости и при всем этом не затормозить его снутри соленоида).

Таковой принцип деяния дает модели достоинства, которые недосягаемы для многих других видов стрелкового вооружения. Она не просит наличия гильз, отличается маленький отдачей, которая равна импульсу вылетающего снаряда, обладает огромным потенциалом бесшумной стрельбы (при наличии довольно обтекаемых снарядов, исходная скорость которых не будет превосходить скорость звука). При всем этом такая винтовка дает возможность вести стрельбу фактически в всех критериях (как молвят, даже в открытом космосе).

И, конечно, огромное количество «умельцев» ценят то, что винтовка Гаусса своими руками в домашних критериях полностью может быть собрана практически «из ничего».

Но некие конструктивные особенности и принципы деяния, которые свойственны для такового изделия, как  Гаусс-винтовка, имеют и негативные черты. Самая основная из их — маленький КПД, который употребляет от 1 до 10 процентов энергии, переданной конденсатором на соленоид. При всем этом множественные пробы поправить этот недочет не принесли существенного результата, а только повысили КПД модели до 27%. Все другие недочеты, которые имеет винтовка Гаусса, вытекают конкретно из малеханького КПД. Винтовке требуется огромное количество энергии для действенной работы, также она имеет массивный вид, огромные габариты и вес, а процесс перезарядки достаточно длителен.

Выходит, что недочеты такового вида орудия, как винтовка Гаусса, перекрывают огромную часть его плюсов. Может быть, с изобретением сверхпроводников, которые можно будет отнести к классу высокотемпературных, и возникновением малогабаритных и массивных источников питания это орудие опять завлечет внимание ученых и военных. Хотя большинством практиков считается, что к этому времени будут существовать другие типы орудия, намного превосходящие винтовку Гаусса.

Единственной областью внедрения данного вида орудия, выгодной уже в наше время, являются галлактические программки. Правительства большинства галлактических держав планировали использовать винтовку Гаусса для установки на галлактических шаттлах либо спутниках.

tipsboard.ru

Электромагнитное оружие

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

РЕФЕРАТ

ПО ФИЗИКЕ

Электромагнитное оружие

Выполнил:

 Проверил:

Томск 2014

[1] Оглавление

[2] Введение

[3] Электромагнитные ускорители масс.

[3.1] Пушка Гаусса.

[3.2] Rail gun

[3.3] Лазер

[3.4] Микроволновые пушки

[3.5] Электромагнитная бомба

[3.6] Сверхрадиочастотное оружие.

[4] Воздействие ЭМО на объекты

[5] Тактика применения ЭМО

[6] Защита от ЭМО

[7] Заключение

[8] Список литературы

  1.  Введение

Электромагнитное оружие (ЭМО) — оружие, в котором для придания начальной скорости снаряду используется магнитное поле, либо энергия электромагнитного излучения используется непосредственно для поражения цели.

В первом случае магнитное поле используется как альтернатива взрывчатым веществам в огнестрельном оружии. Во втором — используется возможность наведения токов высокого напряжения и выведения из строя электрического и электронного оборудования в результате возникающего перенапряжения, либо вызывание болевых эффектов или иных эффектов у человека. Оружие второго типа позиционируется как безопасное для людей и служащее для вывода из строя техники противника или приводящих к небоеспособности живой силы противника; относится к категории Оружие нелетального действия.

Помимо магнитных ускорителей масс, существует множество других типов оружия, использующих для своего функционирования электромагнитную энергию. Рассмотрим наиболее известные и распространенные их типы.

  1.  Электромагнитные ускорители масс.
  1.  Пушка Гаусса.

Названа по имени ученого и математика Гаусса, в честь имени которого названы единицы измерения магнитного поля. 10000Гс = 1Тл) можно описать так. В цилиндрической обмотке (соленоиде) при протекании через нее электрического тока возникает магнитное поле. Это магнитное поле начинает втягивать внутрь соленоида железный снаряд, который от этого начинает разгоняться. Если в тот момент, когда снаряд окажется в середине обмотки ток в последней отключить, то втягивающее магнитное поле исчезнет и снаряд, набравший скорость, свободно вылетит через другой конец обмотки. Чем сильнее магнитное поле и чем быстрее оно отключается – тем сильнее вылетает снаряд.

На практике конструкция простейшего гаусс-гана представляет собой намотанную в несколько слоев на диэлектрическую трубку медную проволоку и конденсатор большой емкости. Внутрь трубки перед самым началом обмотки устанавливается железный снаряд (часто гвоздь со спиленной шляпкой) и предварительно заряженный конденсатор при помощи электрического ключа замыкается на обмотку.

Параметры обмотки, снаряда и конденсаторов должны быть согласованы таким образом, чтобы при выстреле к моменту подлета снаряда к середине обмотки ток в последней уже успевал бы уменьшится до минимального значения, т.е. заряд конденсаторов был бы уже полностью израсходован. В таком случае КПД одноступенчатого МУ будет максимальным.

Рисунок . Схема сборки "гаус гана"

  1.  Rail gun 

Помимо “гаусс ганов”, существует ещё как минимум 2 типа ускорителей масс – индукционные ускорители масс (катушка Томпсона) и рельсовые ускорители масс, так же известные как “рэйл ганы” (от англ. “Rail gun” – рельсовая пушка).

Рисунок . Испытательный выстрел Rail Gun

Рисунок . Американский Rail Gun

В основу функционирования индукционного ускорителя масс положен принцип электромагнитной индукции. В плоской обмотке создается быстро нарастающий электрический ток, который вызывает в пространстве вокруг переменное магнитное поле. В обмотку вставлен ферритовый сердечник, на свободный конец которого надето кольцо из проводящего материала. Под действием переменного магнитного потока, пронизывающего кольцо в нём возникает электрический ток, создающий магнитное поле противоположной направленности относительно поля обмотки. Своим полем кольцо начинает отталкиваться от поля обмотки и ускоряется, слетая со свободного конца ферритового стержня. Чем короче и сильнее импульс тока в обмотке, тем мощнее вылетает кольцо.

Иначе функционирует рельсовый ускоритель масс. В нем проводящий снаряд движется между двух рельс - электродов (откуда и получил свое название - рельсотрон), по которым подается ток. Источник тока подключается к рельсам у их основания, поэтому ток течет как бы в догонку снаряду и магнитное поле, создаваемое вокруг проводников с током, полностью сосредоточенно за проводящим снарядом. В данном случае снаряд является проводником с током, помещённым в перпендикулярное магнитное поле, созданное рельсами. На снаряд по всем законам физики действует сила Лоренца, направленная в сторону противоположную месту подключения рельс и ускоряющая снаряд. С изготовлением рельсотрона связан ряд серьезных проблем - импульс тока должен быть настолько мощным и резким, чтобы снаряд не успел бы испарится (ведь через него протекает огромный ток!), но возникла бы ускоряющая сила, разгоняющая его вперед. Поэтому материал снаряда и рельс должен обладать как можно более высокой проводимостью, снаряд как можно меньшей массой, а источник тока как можно большей мощностью и меньшей индуктивность. Однако особенность рельсового ускорителя в том, что он способен разгонять сверхмалые массы до сверх больших скоростей. На практике рельсы изготавливают из безкислородной меди покрытой серебром, в качестве снарядов используют алюминиевые брусочки, в качестве источника питания - батарею высоковольтных конденсаторов, а самому снаряду перед вхождением на рельсы стараются придать как можно большую начальную скорость, используя для этого пневматические или огнестрельные пушки.

Помимо ускорителей масс к электромагнитному оружия относятся источники мощного электромагнитного излучения, такие как лазеры и магнетроны.

  1.  Лазер 

Он известен всем. Состоит из рабочего тела, в котором при выстреле создается инверсная населенность квантовых уровней электронами, резонатора для увеличения пробега фотонов внутри рабочего тела и генератора, который эту самую инверсную населённость будет создавать. В принципе, инверсную населённость можно создать в любом веществе и в наше время проще сказать, из чего НЕ делают лазеры. Лазеры могут классифицироваться по рабочему телу: рубиновые, СО2, аргоновые, гелий-неоновые, твердотельные (GaAs), спиртовые, и т.д., по режиму работы: импульсные, непрерывные, псевдонепрерывные, могут классифицироваться по количеству используемых квантовых уровней: 3х уровневый, 4х уровневый, 5и уровневые. Так же лазеры классифицируют по частоте генерируемого излучения - микроволновые, инфракрасные, зеленые, ультрафиолетовые, рентгеновские, и т.д. КПД лазера обычно не превышает 0,5%, однако сейчас ситуация изменилась – полупроводниковые лазеры (твердотельные лазеры на основе GaAs) имеют КПД свыше 30% и в наши дни могут обладать мощностью выходного излучения аж до 100(!) Вт, т.е. сравнимую с мощными "классическими" рубиновыми или СО2 лазерами. Кроме того, существуют газодинамические лазеры, менее всего похожие на другие типы лазеров. Их отличие в том, что они способны производить непрерывный луч огромной мощности, что позволяет использовать их для военных целей. В сущности, газодинамический лазер представляет собой реактивный двигатель, перпендикулярно газовому потоку в котором стоит резонатор. Раскаленный газ, выходящий из сопла, находится в состоянии инверсной населённости. Стоит добавить к нему резонатор – и многомеговаттный поток фотонов полетит в пространство.

  1.  Микроволновые пушки

Основным функциональным узлом является магнетрон - мощный источник микроволнового излучения. Недостатком микроволновых пушок является их чрезмерная даже по сравнению с лазерами опасность применения - микроволновое излучение хорошо отражается от препятствий и в случае стрельбы в закрытом помещении облучению подвергнется буквально все внутри! Кроме того, мощное микроволновое излучение смертельно для любой электроники, что так же надо учитывать.

Рисунок . Передвижная радиолокационная система

  1.  Электромагнитная бомба

Электромагни́тная бо́мба, также называемая «электро́нная бомба» — генератор радиоволн высокой мощности, приводящих к уничтожению электронного оборудования командных пунктов, систем связи и компьютерной техники. Создаваемая электрическая наводка по мощности воздействия на электронику оказывается сравнимой с ударом молнии. Относится к классу «оружие нелетального действия».

По принципу разрушения техники разделяются на низкочастотные, использующие для доставки разрушающего напряжения наводку в линиях электропередач, и высокочастотные, вызывающие наводку непосредственно в элементах электронных устройств и обладающие высокой проникающей способностью — достаточно мелких щелей для вентиляции для проникновения волн внутрь оборудования.

Впервые эффект электромагнитной бомбы был зафиксирован в 50-е годы XX века, когда проходили испытания американской водородной бомбы. Взрыв был произведён в атмосфере над Тихим океаном. Результатом было нарушение электроснабжения на Гаваях из-за воздействия электромагнитного импульса высотного ядерного взрыва.

Изучение показало, что взрыв имел непредвиденные последствия. Лучи достигли Гавайских островов, расположенных в сотнях километров от места испытания, и радиопередачи были нарушены до самой Австралии. Взрыв бомбы, помимо мгновенных физических результатов, воздействовал на электромагнитные поля на огромном расстоянии. Однако в дальнейшем взрыв ядерной бомбы как источник электромагнитной волны был признан неэффективным из-за малой точности, а также множества побочных эффектов и неприемлемости в политическом плане.

В качестве одного из вариантов генератора была предложена конструкция в форме цилиндра, в котором создаётся стоячая волна; в момент активации стенки цилиндра быстро сжимаются направленным взрывом и разрушаются на торцах, в результате чего создаются волна очень малой длины. Поскольку энергия излучения обратно пропорциональна длине волны, в результате уменьшения объёма цилиндра мощность излучения резко возрастает.

Доставка этого устройства может быть произведена любым известным способом — от авиации до артиллерии. Применяются как и более мощные боеприпасы с использованием в боевой части ударно-волновых излучателей (УВИ), так и менее мощные с использованием пьезоэлектрических генераторов частоты (ПГЧ)

  1.  Сверхрадиочастотное оружие.

Радиочастотное — оружие, действие которого основано на использовании электромагнитных излучений сверхвысокой (СВЧ) частоты (0,3—30 ГГц) или очень низкой частоты (менее 100 Гц). Объектами поражения этого оружия является живая сила. При этом имеется в виду способность электромагнитных излучений в диапазоне сверхвысоких и очень низких частот вызывать повреждения жизненно важных органов человека (мозга, сердца, сосудов). Оно способно воздействовать на психику, нарушая при этом восприятие окружающей действительности, вызывая слуховые галлюцинации и др.

Когда впервые это оружие было испробовано, наблюдалось много изменений в поведении организмов (в данном случае подопытных крыс). Например, крысы «шарахались» от стен, «защищались» от чего-то. Некоторые подверглись дезориентации, некоторые погибли (разрыв мозга или сердечной мышцы). В журнале «Наука и жизнь» описывались подобные опыты с «электромагнитным стимулированием мозга», результат их был таков: у крыс нарушалась работа памяти и пропадали условные рефлексы.

Так же существует теория, согласно которой с помощью электромагнитного излучения можно влиять на психику человека, не разрушая организм, а вызывая определенные эмоции либо склонять к каким-либо действиям.

Рисунок . Танк Будущего РФ

  1.  Воздействие ЭМО на объекты

Принцип действия ЭМО основан на кратковременном электромагнитном излучении большой мощности, способном вывести из строя радиоэлектронные устройства, составляющие основу любой информационной системы. Элементная база радиоэлектронных устройств весьма чувствительна к энергетическим перегрузкам, поток электромагнитной энергии достаточно высокой плотности способен выжечь полупроводниковые переходы, полностью или частично нарушив их нормальное функционирование. Как известно, напряжения пробоя переходов невысоки и составляют от единиц до десятков вольт в зависимости от типа прибора. Так, даже у кремниевых сильноточных биполярных транзисторов, обладающих повышенной прочностью к перегревам, напряжение пробоя находится в пределах от 15 до 65 В, а у арсенидгаллиевых приборов этот порог равен 10 В. ЗУ, составляющие существенную часть любого компьютера, имеют пороговые напряжения порядка 7 В. Типовые логические ИС на МОП-структурах – от 7 до 15 В, а микропроцессоры обычно прекращают свою работу при напряжениях 3,3–5 В.

Помимо необратимых отказов импульсное электромагнитное воздействие может вызвать восстанавливаемые отказы, или парализацию радиоэлектронного устройства, когда из-за возникающих перегрузок оно на какой-то отрезок времени теряет чувствительность. Возможны также ложные срабатывания чувствительных элементов, что может привести, например, к детонации боеголовок ракет, бомб, артиллерийских снарядов и мин.

По спектральным характеристикам ЭМО можно разделить на два вида: низкочастотное, создающее электромагнитное импульсное излучение на частотах ниже 1 МГц, и высокочастотное, обеспечивающее излучение СВЧ-диапазона. Оба вида ЭМО имеют различия также в способах реализации и в какой-то мере в путях воздействия на радиоэлектронные устройства. Так, проникновение низкочастотного электромагнитного излучения к элементам устройств обусловлено, в основном, наводками на проводную инфраструктуру, включающую телефонные линии, кабели внешнего питания, подачи и съема информации. Пути же проникновения электромагнитного излучения СВЧ-диапазона более обширны – они еще включают прямое проникновение в радиоэлектронную аппаратуру через антенную систему, поскольку СВЧ-спектр охватывает и рабочую частоту подавляемой аппаратуры. Имеющее место проникновение энергии через конструктивные отверстия и стыки зависит от их размеров и длины волны электромагнитного импульса – наиболее сильная связь возникает на резонансных частотах, когда геометрические размеры соизмеримы с длиной волны. На волнах, длиннее резонансной, связь резко уменьшается, поэтому воздействие низкочастотного ЭМО, зависящее от наводок через отверстия и стыки в корпусе аппаратуры, невелико. На частотах же выше резонансной спад связи происходит медленнее, но из-за множества типов колебаний в объеме аппаратуры возникают острые резонансы.

Если поток СВЧ-излучения достаточно интенсивен, то воздух в отверстиях и стыках ионизируется и становится хорошим проводником, экранирующим аппаратуру от проникновения электромагнитной энергии. Таким образом, увеличение падающей на объект энергии может привести к парадоксальному уменьшению энергии, воздействующей на аппаратуру, и, как следствие, к снижению эффективности ЭМО.

Электромагнитное оружие обладает также биологическим воздействием на животных и человека, в основном связанное с их нагревом. При этом страдают не только непосредственно нагреваемые органы, но и те, что напрямую не контактируют с электромагнитным излучением. В организме возможны хромосомные и генетические изменения, активация и дезактивация вирусов, изменения иммунологических и даже поведенческих реакций. Опасным считается подъем температуры тела на 1оС, и продолжение облучения в этом случае может привести к смертельному исходу.

Экстраполяция данных, полученных на животных, позволяет установить опасную для человека плотность мощности. При длительном облучении электромагнитной энергией с частотой до 10 ГГц и плотностью мощности от 10 до 50 мВТ/см2 могут возникнуть конвульсии, состояние повышенной возбудимости и произойти потеря сознания. Заметный нагрев тканей при воздействии одиночных импульсов такой же частоты происходит при плотности энергии около 100 Дж/см2. На частотах выше 10 ГГц допустимый порог нагрева снижается, поскольку вся энергия поглощается поверхностными тканями. Так, на частоте в десятки гигагерц и плотности энергии в импульсе всего 20 Дж/см2 наблюдается ожог кожи.

Возможны и другие последствия облучения. Так, может временно нарушиться нормальная разность потенциалов мембран клеток тканей. При воздействии одиночного СВЧ-импульса длительностью от 0,1 до 100 мс с плотностью энергии до 100 мДж/см2 меняется активность нервных клеток, возникают изменения в электроэнцефалограмме. Импульсы малой плотности (до 0,04 мДж/см2 ) вызывают слуховые галлюцинации, а при более высокой плотности энергии может быть парализован слух или даже повреждена ткань слуховых органов.

  1.  Тактика применения ЭМО

Электромагнитное оружие может применяться как в стационарном, так и мобильном вариантах. При стационарном варианте легче выполнить массогабаритные и энергетические требования к аппаратуре и упростить ее обслуживание. Но в этом случае необходимо обеспечивать высокую направленность электромагнитного излучения в сторону цели во избежание поражения собственных радиоэлектронных устройств, что возможно только благодаря применению остронаправленных антенных систем. При реализации СВЧ-излучения использование остронаправленных антенн не составляет проблемы, чего нельзя сказать относительно низкочастотного ЭМО, для которого мобильный вариант имеет ряд преимуществ. Прежде всего, легче решается проблема защиты собственных радиоэлектронных средств от воздействия ЭМО, поскольку боевое средство можно доставить непосредственно к месту расположения объекта воздействия и только там привести его в действие. И кроме того, отпадает необходимость в применении направленных антенных систем, а в ряде случаев вообще можно обойтись без антенн, ограничившись непосредственной электромагнитной связью между генератором ЭМО и электронными устройствами противника.

При реализации мобильного варианта ЭМО необходимо предусмотреть сбор соответствующей информации о целях, подлежащих электромагнитному воздействию, в связи с чем важная роль отводится средствам радиотехнической разведки. Поскольку подавляющее большинство интересующих целей излучают радиоволны, обладающие определенными характеристиками, средства разведки способны не только их идентифицировать, но и устанавливать их местоположение с достаточной точностью. Средствами доставки ЭМО в мобильном варианте могут служить самолеты, вертолеты, беспилотные летательные аппараты, различные ракеты, корабли, планирующие бомбы.

Эффективное средство доставки ЭМО к цели представляет планирующая бомба, которую можно запускать с самолета (вертолета) с расстояния, превышающего дальность действия системы ПВО противника, что минимизирует риск поражения самолета этой системой и риск повреждения собственных бортовых радиоэлектронных средств при взрыве бомбы. При этом автопилот планирующей бомбы можно запрограммировать таким образом, что профиль полета бомбы к цели и высота ее подрыва будут оптимальны. При использовании бомбы в качестве носителя ЭМО доля массы, приходящаяся на боеголовку, доходит до 85%. Подрыв бомбы может быть осуществлен с помощью радиолокационного высотомера, барометрического устройства или глобальной спутниковой навигационной системы (ГСНС). На рис. 4 представлен комплект бомб, а на рис.5 – профили их доставки к цели с использованием ГСНС [1].

Доставка ЭМО к цели возможна также с помощью специальных снарядов. Электромагнитный боеприпас среднего калибра (100–120 мм) при срабатывании формирует импульс излучения длительностью в несколько микросекунд со средней мощностью в десятки мегаватт и пиковой – в сотни раз больше. Излучение – изотропное, способное на расстоянии 6–10 м подорвать детонатор, а на расстоянии до 50 м – вывести из строя систему опознавания “свой-чужой”, блокировать пуск зенитной управляемой ракеты из переносного зенитно-ракетного комплекса, временно или окончательно вывести из строя неконтактные противотанковые магнитные мины [11].

При размещении ЭМО на крылатой ракете момент его срабатывания определяется датчиком навигационной системы, на противокорабельной ракете – радиолокационной головкой наведения, а на ракете “воздух-возудух” – непосредственно системой взрывателя. Использование ракеты в качестве носителя электромагнитной боеголовки неизбежно влечет ограничение массы ЭМО из-за необходимости размещения электрических аккумуляторов для приведения в действие генератора электромагнитного излучения. Отношение полной массы боеголовки к массе запускаемого оружия составляет примерно от 15 до 30% (для американской ракеты AGM/BGM-109 “Томагавк” – 28%).

Эффективность ЭМО была подтверждена в военной операции “Буря в пустыне”, где применялись преимущественно самолеты и ракеты и где основой военной стратегии было воздействие на электронные устройства сбора и обработки информации, целеуказания и элементы связи с целью парализации и дезинформации системы ПВО.

Рисунок . Генератор сжатия магнитного потока

  1.  Защита от ЭМО

Наиболее эффективная защита от ЭМО – это, конечно, предотвращение его доставки путем физического уничтожения носителей, как и при защите от ядерного оружия. Однако это не всегда достижимо, поэтому следует прибегать также к мерам электромагнитной защиты самой радиоэлектронной аппаратуры. К таким мерам, очевидно, следует прежде всего отнести полную экранировку самой аппаратуры, а также помещений, в которых она размещается. Известно, что если помещение уподобить клетке Фарадея, предотвращающей проникновение внешнего электромагнитного поля, то защита аппаратуры от ЭМО будет полностью обеспечена. Однако в реальности такая экранировка невозможна, поскольку аппаратуре необходимы подводка электропитания извне и каналы связи для приема и передачи информации. Сами каналы связи также должны иметь защиту от проникновения по ним к аппаратуре электромагнитных воздействий. Установка фильтров в данном случае не спасает, поскольку они работают только в определенной полосе частот и соответствующим образом настраиваются, и фильтры, предназначенные для защиты от низкочастотного ЭМО, не будут защищать от воздействия высокочастотного и наоборот. Хорошую защиту от электромагнитных наводок по каналам связи могут обеспечить используемые вместо них волоконно-оптические линии, однако для цепей питания этого сделать невозможно.

Проблему защиты от ЭМО усугубляет еще и то, что развитие современных информационных систем идет по пути их дезинтеграции. Вместо больших центров по приему и обработке информации в каждом учреждении предпочитают иметь свои компьютерные сети, использующие телефонные линии. Это повышает уязвимость радиоэлектронной аппаратуры по отношению к ЭМО, в результате чего применение ЭМО в военных конфликтах становится еще более целесообразным и реальным.

При рассмотрении способов защиты от ЭМО следует также учитывать необходимость устранения любых паразитных излучений защищаемой аппаратуры, поскольку они не только демаскируют аппаратуру, но и способствуют прицельному наведению ЭМО.

Существует достаточно оснований полагать, что в будущем все значимые боевые операции будут начинаться с массированного применения ЭМО, способного нанести серьезный ущерб военно-промышленному потенциалу страны и облегчить проведение последующих военных операций.

Учитывая эффективность и перспективность использования ЭМО в военных операциях, а также преимущества тех, кто владеет этим видом оружия, разработку ЭМО держат в строжайшей тайне под грифом более высоким, чем “Совершенно секретно”, и все проблемы обсуждают только на закрытых заседаниях. Примером может служить секретная научно-техническая конференция, проведенная в июне 1995 г. в предместье Вашингтона только для американцев, на которой обсуждались эффекты от воздействия ЭМО не только на радиоэлектронное оборудование, но также на животных и человека [8]. Отсутствие данных о результатах использования ЭМО в Югославии объясняется и режимом секретности, и желанием сохранить столь эффективное оружие для более серьезных боевых операций.

Сегодня технологией ЭМО в полной мере владеют только США и Россия, однако нельзя не учитывать возможности овладения этой технологией и другими странами, в том числе странами третьего мира.

Об электромагнитном оружии в последнее время ходит множество слухов, мифов и легенд – от бомб, которые «выключают свет» в городах, до чемоданчиков, которые якобы способны вывести из строя любую сложную электронику в радиусе чуть ли не нескольких километров. Хотя весьма малая часть этих слухов имеет хоть какое-нибудь отношение к действительности, электромагнитное оружие действительно существует и даже рассматривается как весьма перспективное направление развития вооружений в современном мире, где войны уже ведутся с помощью сложного, высокотехнологичного и высокоточного оружия.Разумеется, с помощью электромагнитного оружия никто не собирается «выключать свет» в городах (даже в отдельных районах или домах) – такое оружие призвано решать совсем другие задачи.

Рисунок . Взрыв ЭМО

  1.  http://www.gauss2k.narod.ru/index.htm

Основные виды ЭМО (2010)

  1.  http://www.popmech.ru/blogs/post/3375-elektromagnitnoe-oruzhie-mifyi-i-realnost/

Электромагнитное оружие "Мифы и реальность"

(Лекция Александр Прищепенко Доктор физико-математических наук 11 ноября 2010г)

  1.  http://vpk.name/news/40378_novoe_elektromagnitnoe_oruzhie_vyizyivaet_vseobshii_interes.html

Новое электромагнитное оружие 2010

PAGE   \* MERGEFORMAT1

refleader.ru

ЭЛЕКТРОМАГНИТНОЕ МИКРОВОЛНОВОЕ ОРУЖИЕ

Электромагнитное микроволновое оружие — новейшие виды оружия, работа над которыми ведется в XXI в., выводит из строя центральную нервную систему, мозг, вызывает разного рода неприятные ощущения, тревогу, отчаяние, судороги; создает помехи работе компьютерных систем, выводит из строя электронное оборудование. Предназначается в основном для контроля агрессивно настроенной толпы, совершающей противоправные действия, разрабатывается и как оружие для армии.

Вуалирующий лазер — способен создавать волну света, которая обволакивает противника, ослепляя его при этом на короткий промежуток времени. Местонахождение стрелка при этом остается неизвестным.В основу принципа действия положено использование явления свечения хрусталика глаза в ультрафиолетовых и фиолетовых волнах определенной длины.

Микроволновые пушки — испускаемые этим оружием пучки мощного микроволнового излучения выводят из строя любое электронное оборудование, компьютерные системы, но не воздействуют при этом на людей. Орудие предназначается для уничтожения оборудования командных пунктов, сохраняя при этом жизни людей. В настоящее время их устанавливают на крылатых ракетах и беспилотных самолетах.

Плазмотазеры — оружие, которое выстреливает в сторону предполагаемой жертвы, находящейся на расстоянии до 7 м, струю токопроводящего аэрозоля или плотный поток мельчайших проводящих волокон, или поток плазмы, по которым передается высоковольтный электроимпульс, поражающий объект. Токопроводящий канал также можно сформировать с помощью ионизации воздуха ультрафиолетовым лазером. В настоящее время реально создать лазер мощностью 10 ООО ТВт с импульсом продолжительностью 0,4 пс. Этого хватит для ионизации воздуха на 100 м и проведения электрического удара напряжением в 50 кВ.

Микроволновый излучатель — устройство, испускающее пучок электромагнитных волн на несколько сотен метров, которые выводят из строя электронику, могут проникать в тело человека (лучи с длиной волны 3 мм всего на глубину 0,3—0,4 мм), вызывая при этом вскипание молекул воды в подкожном слое. Температура кожи поднимается до 45— 80 °С. Острая, непереносимая боль заставляет человека покинуть зону действия микроволнового излучения. Никаких повреждений при этом на кожных покровах не остается. Созданы микроволновые излучатели мощностью в 1 ПЗт (его вес 20 кг) и больше (при мощности в 20 ГВт вес аппарата достигает 180 кг). Генераторами электромагнитного излучения планируется оснащать артиллерийские снаряды, крылатые ракеты.

Направленное энергетическое оружие — устройство, позволяющее направленным пучком излучения высокой интенсивности (с частотой 95 ГГц) сжечь какую-либо цель, находящуюся на расстоянии от него. У человека реакция на облучение возникает через 2—3 с, невыносимая боль, вызываемая разогреванием кожи, исчезает или после выключения источника излучения, или после покидания зоны облучения. Если же человек не выйдет из зоны, то через 250 с получит ожог кожи.

Сильно разогреваются под действием луча металлические предметы (ключи, очки, пуговицы), при соприкосновении с ними также возникнут ожоги. Регулируя мощность излучения, подбирая параметры воздействия, можно добиться у человека ощущений кислотного ожога, ложных ощущений отталкивающих резких запахов, неприятного вкуса, вызвать принудительное сокращение мышц.

Прибор для борьбы со снайперами — устройство, представляющее собой антенну с 7 микрофонами, блоком с электронным мини-компьютером для обработки полученной информации и пультом управления. Микрофоны улавливают по звуку или воздушной волне, исходящей от летящей пули, направление ее движения, данные обрабатываются за 2 с, по истечении которых позиция снайпера будет уничтожена. Устанавливается на внедорожниках.

Работа по созданию микроволнового оружия ведется в Австрии, Германии, Великобритании, США, Швеции и других странах. Небольшие габариты, малый вес (компактность) позволяют использовать его как тактическое оружие в наступательных и оборонительных целях. Ведется разработка и личного портативного оружия подобного рода (идет работа над созданием парализатора, передающего электроэнергию по ультрафиолетовому лучу на расстояние до 2 км). Подобным оружием будут оснащаться силы правопорядка, спецслужбы, службы охраны АЭС, все рода войск.

enciklopediya-tehniki.ru

Электромагнитная бомба: принцип действия и защита

Научно-технический прогресс стремительно развивается. К сожалению, его результаты проводят не только к улучшению нашей жизни, к новым удивительным открытиям или победам над опасными недугами, но и к появлению нового, более совершенного оружия.

На протяжении всего прошлого столетия человечество «ломало голову» над созданием новых, еще более эффективных средств уничтожения. Отравляющие газы, смертоносные бактерии и вирусы, межконтинентальные ракеты, термоядерное оружие. Не бывало еще такого периода в человеческой истории, чтобы ученые и военные сотрудничали так тесно и, к сожалению, эффективно.

Во многих странах мира активно проводятся разработки оружия на основе новых физических принципов. Генералы весьма внимательно наблюдают за последними достижениями науки и стараются поставить их себе на службу.

Одним из наиболее перспективных направлений оборонных исследований являются работы в области создания электромагнитного оружия. В желтой прессе оно обычно называется «электромагнитная бомба». Подобные исследования стоят весьма недешево, поэтому позволить их себе могут только богатые страны: США, Китай, Россия, Израиль.

Принцип действия электромагнитной бомбы заключается в создании мощного электромагнитного поля, что выводит из строя все устройства, работа которых связана с электричеством.

Это не единственный способ использования электромагнитных волн в современном военном деле: созданы передвижные генераторы электромагнитного излучения (ЭМИ), которые могут вывести из строя электронику противника на расстоянии до нескольких десятков километров. Работы в этой области активно проводятся в США, России, Израиле.

Существуют и еще более экзотические способы военного применения электромагнитного излучения, чем электромагнитная бомба. Большая часть современного оружия использует энергию пороховых газов для поражения противника. Однако все может измениться уже в ближайшие десятилетия. Для запуска снаряда также будут использованы электромагнитные токи.

Принцип действия такой «электрической пушки» довольно прост: снаряд, сделанный из проводящего материала, под воздействием поля выталкивается с большой скоростью на довольно большое расстояние. Эту схему планируют применять на практике уже в ближайшее время. Наиболее активно в этом направлении работают американцы, об успешных разработках оружия с таким принципом действия в России неизвестно.

Электромагнитная бомба

Как вы представляете себе начало Третьей мировой войны? Ослепительные вспышки термоядерных зарядов? Стоны людей, умирающих от сибирской язвы? Удары гиперзвуковых летательных аппаратов из космоса?

Все может быть совсем по-другому.

Вспышка действительно будет, но не очень сильная и не испепеляющая, а похожая, скорее, на раскат грома. Самое «интересное» начнется потом.

Загорятся даже выключенные люминесцентные лампы и экраны телевизоров, в воздухе повиснет запах озона, а проводка и электрические приборы начнут тлеть и искриться. Гаджеты и бытовые приборы, в которых есть аккумуляторы, нагреются и выйдут из строя.

Перестанут работать практически все двигатели внутреннего сгорания. Отключится связь, не будут работать средства массовой информации, города погрузятся во тьму.

Люди не пострадают, в этом отношении электромагнитная бомба – очень гуманный вид оружия. Однако подумайте сами, во что превратится жизнь современного человека, если убрать из него устройства, принцип действия которых основан на электричестве.

Общество, против которого будет применено орудие подобного действия, окажется отброшенным на несколько веков назад.

Как это работает

Как можно создать столь мощное электромагнитное поле, которое способно оказывать подобное действие на электронику и электрические сети? Электронная бомба фантастическое оружие или подобный боеприпас можно создать на практике?

Электронная бомба уже была создана и уже два раза применялась. Речь идет о ядерном или термоядерном оружии. При подрыве подобного заряда одним из поражающих факторов является поток электромагнитного излучения.

В 1958 году американцы взорвали над Тихим океаном термоядерную бомбу, что привело к нарушению связи во всем регионе, ее не было даже в Австралии, а на Гавайских островах пропал свет.

Гамма-излучение, которое в избытке образуется при ядерном взрыве, вызывает сильнейший электронный импульс, что распространяется на сотни километров и выключает все электронные приборы. Сразу после изобретения ядерного оружия, военные занялись разработкой защиты собственной аппаратуры от подобного действия взрывов.

Работы, связанные с созданием сильного электромагнитного импульса, как и разработки средств защиты от него проводятся во многих странах (США, Россия, Израиль, Китай), но почти везде они засекречены.

Можно ли создать работающее устройство, на других менее разрушительных принципах действия, чем ядерный взрыв. Оказывается, что можно. Более того, подобными разработками активно занимались в СССР (продолжают и в России). Одним из первых, кто заинтересовался данным направлением, был знаменитый академик Сахаров.

Именно он первым предложил конструкцию конвенционного электромагнитного боеприпаса. По его задумке высокоэнергетическое магнитное поле можно получить путем сжатия магнитного поля соленоида обычным взрывчатым веществом. Подобное устройство можно было поместить в ракету, снаряд или бомбу и отправить на объект неприятеля.

Однако у подобных боеприпасов есть один недостаток: их малая мощность. Преимуществом подобных снарядов и бомб является их простота и низкая стоимость.

Можно ли защититься?

После первых испытаний ядерного оружия и определения электромагнитного излучения, как одного из его основных поражающих факторов, в СССР и США начали работать над защитой от ЭМИ.

К этому вопросу в СССР подходили очень серьезно. Советская армия готовилась воевать в условиях ядерной войны, поэтому вся боевая техника изготавливалась с учетом возможного воздействия на нее электромагнитных импульсов. Сказать, что защиты от него нет совсем – это явное преувеличение.

Вся военная электроника оборудовалась специальными экранами и надежно заземлялась. В ее состав включались специальные предохранительные устройства, разрабатывалась архитектура электроники максимально устойчивая к ЭМИ.

Конечно, если попасть в эпицентр применения электромагнитной бомбы большой мощности, то защита будет пробита, но на определенном расстоянии от эпицентра, вероятность поражения будет существенно ниже. Электромагнитные волны распространяются во все стороны (как волны на воде) поэтому их сила убывает пропорционально квадрату расстояния.

Кроме защиты, разрабатывались и средства радиоэлектронного поражения. С помощью ЭМИ планировали сбивать крылатые ракеты, есть информация об успешном применении этого метода.

В настоящее время разрабатывают передвижные комплексы, что могут испускать ЭМИ высокой плотности, нарушая работу вражеской электроники на земле и сбивая летательные аппараты.

Видео об электромагнитной бомбе

militaryarms.ru

Призрачные цели электромагнитного оружия » Военное обозрение

Пожалуй, ни один вид оружия сегодня не вызывает такого количества дискуссий, как оружие электромагнитное. В мире существуют даже два лагеря, которые под этим термином подразумевают разные объекты . Представители первого уверены, что электромагнитное оружие имеет огромный потенциал развития и мощность, возможно превосходящую мощность оружия ядерного. Представители второго заявляют, что из электромагнитного оружия не стоит делать голливудскую небылицу - оружие, бесспорно, перспективное, но не способно обесточить целый город и парализовать энергосистему военной базы.

Академик Фортов относит себя к первому лагерю и утверждает, что полноценное электромагнитное оружие уже существует. По его мнению, именно за электромагнитным оружием будущее, ведь оно способно выводить из строя электронику на большом расстоянии от точки излучения. Сам академик РАН склонен относить электромагнитное оружие к стратегическому, так как оно способно оказывать активное влияние во время серьезной операции. Владимир Фортов видит направление развития электромагнитного оружия в двух главных направлениях. Первое направление связано с микроэлектроникой. Современный человек не мыслит своего существования без мобильных устройств. Модернизация армии также подразумевает оснащение войск суперсовременными микроэлектронными датчиками, системами наведения и средствами слежения. Можно себе представить, что произойдет, если с помощью превентивного электромагнитного импульса из строя будет выведена система наведения ракет современного бомбардировщика или отключена система его глобального позиционирования.

Второе направление, согласно Владимиру Фортову, заключается в развитии больших мощностей, заключенных в весьма ограниченном объеме. Ни один из существующих сегодня фильтров не способен блокировать мощный импульс, миллиард-ваттной величины, который будет способен поставить практически неразрешимую задачу перед современной энергетикой.

Слова академика РАН можно принимать за фантастику и связывать с излишне разыгравшейся фантазией, однако для примера здесь вполне уместна ситуация, которая возникла в мире незадолго до появления ядерного оружия. В то время в мире существовало немало людей, которые поднимали на смех факт возможного существования ядерной бомбы, уничтожающей все живое в радиусе нескольких километров вокруг. Однако Хиросима стала красноречивым доказательством убойной мощи «немирного» атома.

Сторонники более острожных взглядов на электромагнитное оружие говорят о том, что единственная его реальная сила заключается в придании с помощью магнитного поля начальной скорости боевому снаряду. В этом случае электромагнитное оружие становится альтернативой принципам огнестрельного оружия. Одним из примеров такого рода оружия является так называемая пушка Гаусса. Представляет собой эта пушка систему, состоящую из ряда катушек индуктивности, крепящихся к прямоугольному основанию; из источника питания, способного выдавать кратковременные мощные импульсы, а также из блока переключения катушек в последовательном режиме. Аккумуляторы заряжают конденсаторы до определенного значения разности потенциалов. Сам выстрел – есть разряд конденсаторов на витки катушки. Принцип работы пушки Гаусса основывается на втягивании сердечника во внутренний объем катушки при прохождении по обмотке постоянного тока. Для усиления «убойной» силы пушки Гаусса поверх катушки монтируется магнитопровод. Чтобы нарастание тока в катушке не замедлялась, ее обмотка должна быть выполнена из провода достаточно большого сечения. Поражающее действие этого вида электромагнитного оружия зависит от подобранной электроемкости системы конденсаторов. Безусловно, мощность такого оружия пока не рассматривается в качестве конкурентной мощности ядерного оружия.

Но время идет. Уже сегодня существуют экспериментальные разработки, которые свидетельствуют о том, что при высоком уровне изоляции, электромагнитное оружие способно наносить весьма ощутимый удар по силам противника. Нужно сказать, что размеры такого оружия более чем внушительны. В этом случае главным вопросом остается вопрос о варианте максимально эффективного применения электромагнитного оружия. Мощность имеющихся сегодня систем такого типа («Silent Guardian» и отечественный «Ранец») не превышает одного гигаватта, однако они позволяют создавать излучение узкой направленности. Первый вариант развития непосредственно связан с узконаправленным электромагнитным изучением, когда поток электронов обладает моночастотой, обеспечивающей поражение цели. Второй – связан с источниками прямого преобразования, которые могут иметь гораздо меньшие габариты, а излучать импульсы с большей энергией.

Казалось бы, преимущества второго варианты очевидны, однако ученые не торопятся переходить к работе по созданию электромагнитного оружия на основе прямого преобразования. Связано это с тем, что такое оружие способно вызывать электрический пробой в среде распространения. Выходит, что пока такой путь ведет в тупик, так как на выходе получится не мощное электромагнитное оружие, способное поражать цели, а устройство, вызывающее свечение воздуха – этакий фейерверк за огромные деньги.

Несмотря на то, что представители двух лагерей ученых склонны видеть в электромагнитном оружии, казалось бы, разные объекты, существует фактическое пересечение взглядов. Это пересечение заключается в имеющемся на сегодняшний день оружии описываемого типа, а также в вариантах его применения.

В мире есть несколько свидетельств применения электромагнитного оружия. Одно из самих громких – воздушная атака американских войск на телецентр в Багдаде. ВВС Соединенных Штатов использовали особую управляемую бомбу массой 2,5 тонны, оснащенную виркатором (группой СВЧ-приборов с большим объемным зарядом). После ее применения телевидение Ирака не могло вещать около часа. Другое свидетельство – осыпание иракских ПВО ракетами «Томагавк» с теми же виркаторами. В этом случае не удалось оценить истинную роль электромагнитного оружия, так как в то же самое же время по тем же объектам ПВО работали и другие (классические) типы ракет. Эти свидетельства не единичны, но, как видно, в плане попыток использования ЭМО фигурируют пока лишь Соединенные Штаты.

Перспективно использование электромагнитного оружия и для подавления активной защиты современных танков. Один направленный импульс – и современная машина превращается в незащищенную металлическую игрушку, которую можно уничтожать привычными средствами. При этом танк, как и любая другая современная военная машина, не просто становится уязвимым, но и на короткое время теряет возможность отвечать ударом на удар. В этой связи развитие электромагнитного оружия можно назвать в числе приоритетных задач для современных военных ученых. Если такая технология в полной мере заработает в какой-либо одной стране, то это расшатает баланс военной мощи на планете. Сложно себе представить, что может произойти, если технология создания мощного электромагнитного оружия попадет в руки к представителям террористических сетей.

topwar.ru