Самый большой ядерный взрыв в космосе: поражающие факторы, фото и последствия. Взрыв в космосе


поражающие факторы, фото и последствия

Всем современникам давно известна та ужасающая гонка вооружений, устроенная американцами и Советским Союзом после окончания Второй Мировой Войны. И главным объектом в этом действии являлся космос, используемый далеко не в благих и мирных целях.

Так, к концу пятидесятых годов прошлого века все мировые СМИ трубили не только о запусках спутников, но о прогремевших ядерных взрывах в ближайшем к Земле космическом пространстве. Разумеется, Союз тоже был в курсе подобных экспериментов, но вот про советские испытания не знал в мире никто. "Железный занавес" закрыл доступ к секретной информации о ядерных опытах СССР. Впрочем, она не разглашается и по сей день, а все имеющиеся рассказы о советских военно-космических операциях - это неофициальная информация.

Безусловно, и СССР, и США занимались сбором данных о том, как влияет ядерный взрыв и радиация, "вылупляющаяся" из него, как цыпленок из яйца, на рабочее состояние спутниковой аппаратуры, ракет и системы, связывающие Землю с "космосом". Закончилась эта вакханалия только в 1963 году, благодаря подписанию договора между тремя странами, включая Великобританию. Данный документ ставил под запрет все дальнейшие испытания ядерного оружия как в космосе, так и в земной атмосфере, а также под водой.

Эксперименты американцев

Ядерный взрыв в космосе, устроенный американцами, между прочим, не раз и не два, с одной стороны, носил научный характер, с другой - все уничтожающий. Ведь никто не знал, как поведет себя радиационный фон после взрыва. Ученые могли лишь строить догадки, но такого шокирующего материала, который они в итоге получили не ожидал никто. Ниже будет рассказано о влиянии ядерного взрыва в космосе на обычную земную жизнь и их жителей.

Первой и самой известной стала операция под названием "Аргус", проведенная одним сентябрьским днем в 1958 году. Причем район для подготовки взрыва ядерной бомбы в космосе подбирали очень тщательно.

Подробности операции "Аргус"

Итак, в начале осени 1958 года южная Атлантика превратилась в настоящий испытательный полигон. Операция заключалась в испытаниях ядерного взрыва в космосе в пределах радиационных поясов Ван-Аллена. Обозначенной целью являлось выяснение всех последствий для средств связи, а также электронной начинки спутниковых "тел" и баллистических ракет.

Второстепенная цель была не менее интересна: ученым нужно было подтвердить, либо опровергнуть факт образования искусственного радиационного пояса в пределах нашей планеты посредством ядерного взрыва в космосе. Поэтому американцы выбрали очень предсказуемое место, в котором имеется особая аномалия: именно на юге Атлантического региона радиационные пояса подступают ближе всего к земной поверхности.

запуск баллистической ракеты "Аргус"

Для такой глобальной операции американское руководство создало из второго флота страны специальное соединение, назвав его числом 88. В его состав входило девять судов с более, чем четырьмя тысячами сотрудников. Такое количество было необходимо из-за масштабности самого проекта, ведь после ядерного взрыва в космосе американцам надо было собирать полученные данные. Для этих целей на кораблях находились особенные ракеты, предназначенные для геодезических запусков.

В этот же период в космическое пространство был выведен спутник Explorer-4. Его задачей являлось вычленение из общей космической информации данных о радиационном фоне в поясе Ван-Аллен. Был еще и его брат - Explorer-5, запуск которого провалился.

Каким же образом происходило испытание взрыва ядерной бомбы в космосе? Первый запуск был осуществлен еще 27 августа. Ракета была доставлена на высоту 161 км. Второй - 30 августа, тогда ракета поднялась до 292 км, а вот третий, проведенный 6 сентября, вошел в историю как самый высотный и самый большой ядерный взрыв в космосе. Сентябрьский запуск ознаменовался высотой в 467 км.

Мощность взрыва была определена в одну 1,7 килотонны, а одна боеголовка имела вес в почти 99 кг. Для выяснения того, что будет от ядерного взрыва в космосе, американцы отправляли боеголовки, используя баллистическую ракету Х-17А, предварительно модифицированную. Она имела длину 13 м и диаметр 2 м.

В итоге, после сбора всех исследовательских данных операция "Аргус" доказала, что из-за электромагнитного импульса, полученного в последствии взрыва, аппаратура и связь может не просто повредиться, но и окончательно выйти из строя. Правда, помимо данной информации, была выявлена сенсационная новость, подтверждающая возникновение искусственных радиационных поясов на нашей планете. Американская газета, используя фото ядерного взрыва из космоса, описала "Аргус" как самый крупномасштабный научный опыт за всю историю современного человечества.

А то самое соединение 88, попавшее в непосредственную гущу событий, расформировали и, согласно достоверным источникам, умерших от рака людей среди них было больше, чем в группах, занимавшихся контролем и учетом данных.

Советские секретные операции

Советский Союз тоже интересовался поражающими факторами от ядерного взрыва в космосе, поэтому, согласно неподтвержденным данным, была проведена целая серия экспериментов под кодовым названием "Операция К". Испытания проводились уже после американских. Эксперименты по выяснению вопроса, возможен ли ядерный взрыв в космосе, советские ученые проводили на ракетном полигоне, что расположен в поселении Капустин Яр.

Всего было проведено пять испытаний. Первые два в 1961-м, осенью, а через год почти в это же время - остальные три. Все они отмечались буквой "К" с порядковой цифрой запуска. Для того чтобы понять, как выглядит ядерный взрыв из космоса, запускалось две баллистических ракеты. Одна была оснащена зарядом, а другая имела особые датчики, следившие за процессом.

Невероятный взрыв вид из космоса

Во время проведения первых двух операций заряды достигли отметки 300 и 150 км, соответственно, а остальные три имели схожие данные, кроме "К-5" - она взорвалась на высоте 80 км. Со слов испытателя Бориса Чертока, написавшего книгу "Ракеты и люди", вспышка от взрыва светилась всего малую долю секунды, она была похожа на второе солнце. СССР выяснил ту же информацию, что и американцы - все радиоприборы работали с заметными нарушениями, а радиосвязь вообще на некоторое время была прервана в радиусе ближайшего района.

Взрывы в космосе

Но помимо указанных выше испытаний, в промежутке между американской и советской операциями, США успели проделать еще два ядерных взрыва в космосе, последствия от которых были куда трагичнее.

Один из запусков, совершенный в 1962 году, носил название "Фишбол", но среди военных был известен как "Рыба-звезда". Взрыв должен был произойти на 400-километровой высоте, а его мощность должна была быть равна 1,4 мегатонн. Однако, данная операция оказалась безуспешной. 20 июня 1962 года с ракетного полигона, расположенного на тихоокеанском атолле Джонстон, отправилась баллистическая ракета с технической неисправностью, о которой заведомо известно не было. Таким образом, через 59 секунд после старта ее двигатель просто отключился.

Тогда для предотвращения глобальной катастрофы, офицер по безопасности отдал ракете команду самоликвидироваться. Ракета была взорвана на высоте всего в 11 км, данная высота является крейсерской для многих гражданских самолетов. В итоге, к счастью для американцев, взрывчатое вещество уничтожило ракету, что позволило обезопасить острова от ядерного взрыва. Правда, часть обломков, упавшая на рядом расположенный атолл Сэнд, смогла заразить местность радиацией.

9 июля эксперимент решили повторить. Но в этот раз запуск прошел успешно и, судя по сделанным фото ядерного взрыва в космосе, красное зарево было видно даже со стороны Новой Зеландии, расположенной в 7 000 км от Джонсона. Данное испытание быстро предали огласке, в отличие от первых экспериментальных опытов.

самый высокий ядерный взрыв

Космические аппараты СССР и США наблюдали за успешным запуском. Союз, благодаря спутнику "Космос-5", смог зафиксировать увеличение гамма-излучения на приличное количество порядков. А ведь спутник плавал в космическом пространстве на 1 200 м ниже взрыва. После было отмечено появление мощного радиационного пояса, и три спутника, прошедшие через его "тело", практически вышли из строя из-за повреждения солнечных батарей. Поэтому в 1962 году СССР сверялся с координатами нахождения данного пояса при запуске ракет "Восток-3" и "Восток-4". Ядерное загрязнение магнитосферы отмечалось в течение нескольких последующих лет.

Следующий американский запуск был совершен 20 октября того же года. Его кодовое название было "Чикмэйт". Боеголовка взорвалась на высоте в 147 км, а местом проведения испытания было само космическое пространство.

Как происходит ядерный взрыв в космосе?

Со всеми испытаниями мы ознакомились, благо никакая другая страна мира не поддержала подобные советско-американские эксперименты. А теперь давайте разберем, какой у ядерного взрыва вид из космоса, согласно научному объяснению. Какая последовательность событий происходит после доставления ядерной боеголовки в космическое пространство?

Первые десятки наносекунд из нее с высокой скоростью выбрасываются гамма-кванты. На высоте 30 км в земной атмосфере гамма-кванты сталкиваются с нейтральными молекулами, впоследствии образуют электроны, наделенные высокой энергией. Развивая огромную скорость, уже заряженные частицы рождают мощное электромагнитное излучение, выводящее из строя абсолютно любые чувствительные электронные приборы, расположенные в зоне излучения на земле.

Поражающий фактор ядерного взрыва

Следующие пара секунд выброшенная энергия из боеголовки сработает как излучение рентгена. Правда, такой рентген состоит из очень мощных волн и электромагнитных потоков. Именно они создают напряжение внутри спутника, из-за чего вся его электронная начинка попросту перегорает.

Что происходит с оружием в космосе после взрыва?

Но на этом взрыв не заканчивается, его итоговая часть выглядит в форме разрозненных ионизированных останков от боеголовки. Они преодолевают сотни километров пока не вступают во взаимодействие с земным магнитным полем. После такого соприкосновения создается низкочастотное электрическое поле, волны которого постепенно распространяются вокруг всей планеты и отражаются от нижних краев ионосферы, а также от земной поверхности.

взрыв по программе "Рыба-звезда"

Но даже низкие частоты могут нести разрушительные последствия для электрических цепей и линий, расположенных под водой далеко от места взрыва. Последующие месяцы электроны, попавшие в магнитное поле, постепенно выводят из рабочего состояния всю электронику и авионику земных спутников.

Противоракетная система США

Благодаря наличию фото из космоса с ядерным взрывом и всей прилагающийся информацией по изучению запусков, Америка начала формировать противоракетный оборонительный комплекс. Однако, создать что-то противостоящее ракетам дальнего действия достаточно сложно и, скорее, невозможно. То есть, если против летящей ракеты с ядерной боеголовкой применить ракету из ПРО, то получится настоящий высотный взрыв ядерного характера.

Повреждение космического спутника

В начале XXI века специалисты из Пентагона провели оценочную работу, связанную с последствиями от ядерных космических испытаний. Согласно их отчету, даже небольшой ядерный заряд, например, равный 20 килотоннам (бомба в Хиросиме имела именно такую цифру) и взорванный на высоте до 300 км, всего за пару недель выведет из строя абсолютно все спутниковые системы, не защищенные от радиационного фона. Таким образом, примерно на месяц страны, имеющие на низкой орбите спутниковые "тела", останутся без их помощи.

Последствия

Согласно данным все того же отчета Пентагона, из-за высотного ядерного взрыва многие точки околоземного пространства впитывают повышенную на несколько порядков радиацию, сохраняют такой уровень на протяжении ближайших двух-трех лет. Несмотря на изначальную антирадиационную защиту, предполагаемую в проектировании спутниковой системы, накапливание радиации происходит гораздо быстрее, чем ожидалось.

В таком случае, первоначально прекратят работу ориентационные приборы и связь. Отсюда следует, что срок жизни спутника сократится в разы. Плюс ко всему, повышенный радиационный фон сделает невозможным отправку бригады для осуществления ремонтных работ. Режим ожидания составит от года и более, пока радиационный уровень не снизится. При повторном запуске ядерной боеголовки в космос замена всех аппаратов выльется в сто миллиардов долларов, и это без учета нанесенного вреда экономической сфере.

Какая защита может быть от радиации?

Долгие годы Пентагон пытается разработать правильную программу для создания защиты своим спутниковым аппаратам. Большинство военных спутников перевели на более высокие орбиты, которые считаются наиболее безопасными в отношении выделяемой радиации при ядерном взрыве. Некоторые спутники снабдили специальными экранами, которые могут защитить электронные приборы от радиационных волн. В целом, это что-то наподобие Фарадеевых клеток: своеобразные оболочки из металла, не имеющие доступа извне, а также не допускающие попадания внутрь наружного электромагнитного поля. Оболочка изготавливается из алюминия толщиной до одного сантиметра.

Спутник НАСА

Но глава проекта, разрабатываемого в лабораториях ВВС США, Грэг Джинет, утверждает, что если сейчас американские космические аппараты не полностью защищены от радиации, то в будущем появится возможность устранить ее намного быстрее, чем с этим справляется сама природа. Группа ученых разбирают пошаговую возможность выдувания радиационного фона с низких орбит благодаря искусственному созданию низкочастотных радиоволн.

Что такое HAARP

Если рассматривать вышеотмеченный момент в теоретическом плане, то есть возможность создавать целые флотилии особых спутников, работа которых заключалась бы в производстве этих самых низкочастотных радиоволн вблизи с радиационными поясами. Проект называется HAARP или "Программа исследований высокочастотных активных авроральных областей". Работа ведется на территории Аляски в поселении Гакона.

Здесь занимаются исследованиями активных мест, возникающих в ионосфере. Ученые пытаются добиться результатов в управлении их свойствами. Помимо космического пространства, данный проект направлен и на исследования новейших технологий связи с подлодками, а также другими машинами и объектами, расположенными под землей.

fb.ru

В Солнечной системе произошел гигантский взрыв неизвестного происхождения: cycyron

Оригинал взят у ladstas в В Солнечной системе произошел гигантский взрыв неизвестного происхождения Спутники слежения за околосолнечным пространством Stereo Ahead зафиксировали в нашей Солнечной системе нечто действительно странное. 7 мая 2018 в космосе произошел мощнейший взрыв и появилась огромная ударная волна таких размеров, как будто взорвалась какая-то планета...

С 7 числа на снимках со спутников хорошо видна распространяющаяся ударная волна от взрыва, которая продолжала распространяться и 8, 9, 10, 11 мая, накрыв планеты нашей Солнечной системы. После 11 мая ударная волна продолжала распространяться и по всей видимости к 15 мая уже достигла Солнца и скоро достигнет и нашей планеты.

Взрыв был настолько мощным, что на начальном этапе это вызвало сильное засвечивание камер установленных на спутниках. Возникает вопрос, что же взорвалось в нашей Солнечной системе с такой силой?

Взорвалась какая-то из планет? Корабль инопланетян кто-то уничтожил на подлете к Земле? Гипотез может быть множество, но событие действительно экстраординарное...

Обращаю ваше внимание на то, что Солнце с данного ракурса расположенао слева за кадром. Проще говоря эта вспышка к Солнцу не имеет никакого отношения. Размеры события огромны и произвести подобное может только по истине колоссальный взрыв.

Источник - http://earth-chronicles.ru/news/2018-05-15-115477

ДОПОЛНИТЕЛЬНО:

Скачать эту статью в режиме HTML - http://dropmefiles.com/umpgW

=============================[Сделать перепост всего текста ]Перепост всего текста

Скопируйте весь текст в рамке и введите его в поле HTML-редактора у себя в ЖЖ, войдя туда через кнопку "Новая запись". И не забудьте внести название в заголовок и нажать на кнопку "Отправить в ...".

Оригинал взят у <lj user="cycyron" /> в <a href="https://cycyron.livejournal.com/7373374.html">В Солнечной системе произошел гигантский взрыв неизвестного происхождения</a> Оригинал взят у <lj user="ladstas" /> в <a href="https://ladstas.livejournal.com/560802.html">В Солнечной системе произошел гигантский взрыв неизвестного происхождения</a> <center><img src="" /></center> Спутники слежения за околосолнечным пространством Stereo Ahead зафиксировали в нашей Солнечной системе нечто действительно странное. 7 мая 2018 в космосе произошел мощнейший взрыв и появилась огромная ударная волна таких размеров, как будто взорвалась какая-то планета... С 7 числа на снимках со спутников хорошо видна распространяющаяся ударная волна от взрыва, которая продолжала распространяться и 8, 9, 10, 11 мая, накрыв планеты нашей Солнечной системы. После 11 мая ударная волна продолжала распространяться и по всей видимости к 15 мая уже достигла Солнца и скоро достигнет и нашей планеты. Взрыв был настолько мощным, что на начальном этапе это вызвало сильное засвечивание камер установленных на спутниках. Возникает вопрос, что же взорвалось в нашей Солнечной системе с такой силой? Взорвалась какая-то из планет? Корабль инопланетян кто-то уничтожил на подлете к Земле? Гипотез может быть множество, но событие действительно экстраординарное... <center><iframe src="https://www.youtube.com/embed/I9I1WUp1ABc?wmode=opaque" frameborder="0" allowfullscreen="allowfullscreen" data-link="https://youtube.com/watch?v=I9I1WUp1ABc"></iframe></center> <lj-cut> Обращаю ваше внимание на то, что Солнце с данного ракурса расположенао слева за кадром. Проще говоря эта вспышка к Солнцу не имеет никакого отношения. Размеры события огромны и произвести подобное может только по истине колоссальный взрыв. Источник - http://earth-chronicles.ru/news/2018-05-15-115477 <b>ДОПОЛНИТЕЛЬНО:</b> <center><iframe src="https://www.youtube.com/embed/bcIrkfr5aWM?wmode=opaque" frameborder="0" allowfullscreen="allowfullscreen" data-link="https://youtube.com/watch?v=bcIrkfr5aWM"></iframe> <iframe src="https://www.youtube.com/embed/T4i4sVsdql8?wmode=opaque" frameborder="0" allowfullscreen="allowfullscreen" data-link="https://youtube.com/watch?v=T4i4sVsdql8"></iframe></center> Скачать эту статью в режиме HTML - http://dropmefiles.com/umpgW </lj-cut> <br/> <lj-like buttons="repost, fb, vk, tw, go, su, tu, pocket, odnoklassniki, lj" />=============================

cycyron.livejournal.com

10 популярных заблуждений о космосе

Как только люди впервые подняли свои головы и устремили свой взор в ночное небо, они были буквально очарованы светом звезд. Это очарование привело к тысячам лет работы над теориями и открытиями, связанными с нашей Солнечной системой и космическими телами, находящимися в ней. Однако, как и в любой другой сфере, знания о космосе нередко основываются на ложных выводах и неправильных трактовках, которые впоследствии воспринимаются за чистую монету. Учитывая то, что предмет астрономии был очень популярен не только среди профессионалов, но и среди любителей, легко понять, почему время от времени эти заблуждения прочно укореняются в сознании общества.

Темная сторона Луны

Многие люди наверняка слышали альбом «The Dark Side of the Moon» группы Pink Floyd, а сама идея о том, что у Луны есть темная сторона, стала очень популярной среди общества. Только вот дело в том, что у Луны нет никакой темной стороны. Это выражение является одним из самых распространенных заблуждений. И его причина связана с тем, как Луна оборачивается вокруг Земли, а также с тем, что Луна всегда повернута к нашей планете только одной стороной. Однако несмотря на то, что мы видим только одну ее сторону, мы часто становимся свидетелями того, что некоторые ее части становятся светлее, в то время как другие покрыты мраком. Учитывая это, логично было предположить, что то же правило было бы справедливо и для другой ее стороны.

Более правильным определением было бы «дальняя сторона Луны». И даже если мы ее не видим, она не всегда остается темной. Все дело в том, что источником свечения Луны на небе является не Земля, а Солнце. Даже если мы не видим другую сторону Луны, она тоже освещается Солнцем. Это происходит циклично, как и на Земле. Правда, цикл этот длится несколько дольше. Полный лунный день эквивалентен примерно двум земным неделям. Два интересных факта вдогонку. При лунных космических программах никогда не осуществлялась посадка на ту сторону Луны, которая всегда отвернута от Земли. Пилотируемые космические миссии никогда не осуществлялись во время ночного лунного цикла.

Влияние Луны на приливы и отливы

Одно из самых распространенных заблуждений связанно с тем, как работают приливно-отливные силы. Большинство людей понимает, что зависят эти силы от Луны. И это правда. Однако многие люди по-прежнему ошибочно считают, что только Луна отвечает за эти процессы. Говоря простым языком, приливно-отливные силы могут контролироваться гравитационными силами любого близко расположенного космического тела достаточных размеров. И хотя Луна действительно имеет большую массу и близко к нам расположена, она не является единственным источником этого феномена. На приливно-отливные силы определенное воздействие оказывает и Солнце. При этом совместное воздействие Луны и Солнце многократно усиливается в момент выравнивания (в одну линию) этих двух астрономических объектов.

Тем не менее Луна действительно оказывает больше воздействия на эти земные процессы, чем Солнце. Все потому, что даже несмотря на колоссальную разницу в массе, Луна находится к нам ближе. Если однажды Луна будет разрушена, возмущение океанских вод совсем не прекратится. Однако само поведение приливов и отливов определенно существенно изменится.

Солнце и Луна единственные космические тела, которые можно видеть днем

Какой астрономический объект мы можем видеть днем в небе? Правильно, Солнце. Многие люди не раз видели еще Луну днем. Чаще всего ее видно либо ранним утром, либо когда только-только начинает вечереть. Однако большинство людей считает, что только эти космические объекты можно увидеть в небе днем. Опасаясь за свое здоровье, люди обычно не смотрят на Солнце. А ведь рядом с ним днем можно обнаружить еще кое-что.

Есть на небе еще один объект, который можно увидеть в небе даже днем. Этим объектом является Венера. Когда вы смотрите в ночное небо и видите явно выделяющуюся светящуюся точку на нем, знайте — чаще всего вы видите именно Венеру, а не какую-нибудь звезду. Фил Плейт, колумнист Bad Astronomy портала Discover составил небольшое пособие, следуя которому на дневном небе можно найти и Венеру, и Луну. Автор при этом советует быть очень осторожным и стараться не смотреть на Солнце.

Космос между планетами и звездами пустой

Когда мы говорим о космосе, то сразу представляем себе бескрайнее и холодное пространство, заполненное пустотой. И хотя мы прекрасно знаем, что во Вселенной продолжается процесс формирования новых астрономических объектов, многие из нас уверены в том, что пространство между этими объектами совершенно пусто. Чего удивляться, если сами ученые очень долгое время в это верили? Однако новые исследования показали, что во Вселенной имеется гораздо больше интересного, чем можно заметить невооруженным глазом.

Не так давно астрономы обнаружили в космосе темную энергию. И именно она, по мнению многих ученых, заставляет Вселенную по-прежнему расширяться. Более того, скорость этого расширения пространства постоянно увеличивается, и, по мнению исследователей, через многие миллиарды лет это может привести к «разрыву» Вселенной. Загадочная энергия в том или ином объеме имеется практически везде — даже в самом строении пространства. Физики, изучающие этот феномен, считают, что несмотря на наличие многих загадок, которые только еще предстоит решить, само межпланетное, межзвездное и даже межгалактическое пространство совсем не такое пустое, каким мы его представляли ранее.

Мы имеем четкое представление обо всем, что творится в нашей Солнечной системе

Долгое время считалось, что внутри нашей Солнечной системы имеется девять планет. Последней планетой являлся Плутон. Как вы знаете, статус Плутона как планеты был недавно поставлен под вопрос. Причиной этому стало то, что астрономы стали находить внутри Солнечной системы объекты, размеры которых соотносились с размером Плутона, однако находятся эти объекты внутри так называемого Пояса астероидов, расположенного сразу позади бывшей девятой планеты. Это открытие быстро изменило у ученых представление о том, как выглядит наша Солнечная система. Совсем недавно была опубликована теоретическая научная работа, в которой говорится о том, что внутри Солнечной системы могут содержаться еще два космических объекта размером больше Земли и примерно в 15 раз больше ее по массе.

Эти теории основаны на расчетах цифр различных орбит объектов внутри Солнечной системы, а также их взаимодействия между собой. Однако, как указано в работе, наука пока не обладает подходящими телескопами, которые помогли бы доказать или же опровергнуть данное мнение. И хотя пока такие высказывания кажутся гаданием на кофейной гуще, определенно понятно (благодаря многим другим открытиям), что во внешних границах нашей Солнечной системы имеется гораздо больше интересного, чем мы считали ранее. Наши космические технологии постоянно развиваются, и мы создаем все более современные телескопы. Вполне вероятно, что однажды они помогут нам найти нечто ранее незамеченное на задворках нашего дома.

Температура Солнца постоянно растет

Согласно одной из самых популярных «теорий заговора», воздействие солнечного света на Землю повышается. Однако происходит это не из-за загрязнения окружающей среды и каких-либо глобальных климатических изменений, а ввиду того, что температура Солнца растет. Утверждение это частично верно. Однако этот рост зависит от того, какой год на календаре.

С 1843 года ученые постоянно документируют солнечные циклы. Благодаря этому наблюдению они поняли, что наше Светило довольно предсказуемо. В определенный цикл своей активности температура Солнца повышается до определенного предела. Цикл сменяется и температура начинает снижаться. Согласно ученым из NASA, каждый солнечный цикл длится около 11 лет, и последние 150 исследователи следят за каждым из них.

Несмотря на то, что многие вещи в отношении нашего климата и его связи с солнечной активностью по-прежнему остаются загадкой для ученых, наука имеет вполне хорошее представление о том, когда стоит ожидать увеличения или снижения этой самой солнечной активности. Периоды нагрева и остывания Солнца принято называть солнечным максимумом и солнечным минимумом. Когда Солнце находится в своем максимуме, вся Солнечная система становится теплее. Однако этот процесс вполне естественен и происходит каждые 11 лет.

Поле астероидов Солнечной системы сродни минному

В классической сцене «Звездных войн» Хану Соло и его друзьям на борту пришлось скрываться от своих преследователей внутри астероидного поля. При этом было озвучено, что шансы на успешный пролет этого поля составляют 3720 к 1. Это замечание, как и зрелищная компьютерная графика, отложили в умах людей мнение о том, что астероидные поля сродни минным и предсказать успешность их пересечения практически невозможно. На самом же деле это замечание неверно. Если бы Хану Соло пришлось пересечь астероидное поле в реальности, то, скорее всего, каждое изменение в траектории полета происходило бы не чаще чем раз в неделю (а не раз в секунду, как это показано в фильме).

Почему, спросите вы? Да потому что космос огромен и расстояния между объектами в нем, как правило, в равной степени тоже очень большое. Например, Пояс астероидов в нашей Солнечной системе очень рассеян, поэтому в реальной жизни Хану Соло, как, впрочем, и самому Дарту Вейдеру с целым флотом звездных разрушителей, не составило бы труда его пересечь. Те же астероиды, которые были показаны в самом фильме, скорее всего, являются результатом столкновения двух гигантских небесных тел.

Взрывы в космосе

Есть два очень популярных заблуждения о том, как работает принцип взрывов в космосе. Первое вы могли видеть во многих научно-фантастических фильмах. При столкновении двух космических кораблей происходит гигантский взрыв. При этом он часто получается настолько мощным, что ударная волна от него разрушает также и находящиеся рядом другие космические корабли. Согласно второму заблуждению, так как в вакууме космоса нет кислорода, то взрывы в нем вообще невозможны как таковые. Реальность же на самом деле лежит где-то между двумя этими мнениями.

Если взрыв произойдет внутри корабля, то кислород внутри него смешается с другими газами, что в свою очередь создаст необходимую химическую реакцию для появления огня. В зависимости от концентрации газов, огня может появится действительно столько, что хватит для взрыва всего корабля. Но так как в космосе нет давления, взрыв рассеется в течение нескольких миллисекунд после того, как попадет в условия вакуума. Это произойдет настолько быстро, что вы даже моргнуть не успеете. Помимо этого, не будет никакой ударной волны, которая является самой разрушительной частью взрыва.

Все экзопланеты похожи на Землю

Последнее время в новостях очень часто можно встретить заголовки о том, что астрономы нашли очередную экзопланету, которая потенциально может поддерживать жизнь. Когда люди слышат о новых найденных планетах в таком ключе, то чаще всего они думают о том, как было бы здорово найти способ собрать свои вещи и отправиться в более чистые места обитания, где природа не подвергалась техногенным воздействиям. Но перед тем, как мы отправимся покорять просторы дальнего космоса, нам придется решить ряд очень важных вопросов. Например, пока мы не изобретем полностью новый метод космических путешествий, возможность добраться до этих экзопланет будет такой же реальной, как и магические ритуалы по призыву демонов из другого измерения. Даже если мы найдем способ, как максимально быстро добраться из точки «А» в космосе в точку «Б» (используя гиперпространственные варп-двигатели или червоточины, например), перед нами по-прежнему будет стоять ряд задач, которые нужно будет решить перед вылетом.

Вы думаете, что мы многое знаем об экзопланетах? На самом деле мы даже не имеем представления о том, что это такое. Дело в том, что эти экзопланеты находятся настолько далеко, что мы даже не в состоянии вычислить их действительные размеры, состав атмосферы и температуру. Все знания о них основаны лишь на догадках. Все, что мы можем, это лишь предположить дистанцию между планетой и ее родной звездой и на базе этих знаний вывести значение ее предполагаемого размера по отношению к Земле. Стоит также учесть, что несмотря на частые и громкие заголовки о новых найденных экзопланетах, среди всех находок только около сотни располагаются внутри так называемой обитаемой зоны, потенциально пригодной для поддержания землеподобной жизни. Более того, даже среди этого списка на самом деле пригодными для жизни могут оказаться только единицы. И слово «могут» здесь употреблено не случайно. У ученых на этот счет тоже нет однозначного ответа.

Вес тела в космосе равен нулю

Люди думают, что если человек находится на космическом корабле или космической станции, то его тело находится в полной невесомости (то есть вес тела равен нулю). Однако это очень распространенное заблуждение, так как в космосе есть такая штука, которая называется микрогравитацией. Это состояние, при котором ускорение, вызванное гравитацией, все еще действует, но значительно снижено. И при этом сама сила гравитации никак не изменяется. Даже когда вы не находитесь над поверхностью Земли, сила гравитации (притяжения), оказываемая на вас, по-прежнему очень сильна. В дополнение к этому на вас будут оказываться силы гравитации Солнца и Луны. Поэтому когда вы находитесь на борту космической станции, то ваше тело от этого меньше весить не будет. Причина же состояния невесомости заключается в том принципе, по которому эта станция оборачивается вокруг Земли. Если говорить простым языком, человек в этот момент находится в бесконечном свободном падении (только падает он вместе со станцией не вниз, а вперед), а поддерживает парение само вращение станции вокруг планеты. Этот эффект можно повторить даже в земной атмосфере на борту самолета, когда машина набирает определенную высоту, а потом резко начинает снижение. Эта техника иногда используется для тренировки космонавтов и астронавтов.

hi-news.ru

Возможен ли взрыв обычной современной гранаты в космосе? Если да, то каковы будут последствия? Если нет, то почему?

Если коротко - да. Конструктивно граната допускает взрыв в космосе.

Дальше много букв. Для примера возьмём всем известную ручную оборонительную противопехотную осколочную гранату дистанционного действия Ф-1 - в народе "лимонка" - со стандартным запалом УЗРГ(М). Такая граната снаряжена тротилом (тринитротолуолом), для детонации которого не нужен атмосферный кислород. Взрывчатое вещество уже содержит в себе кислородосодержащие вещества; это позволяет ему окисляться самостоятельно, что в замкнутых объёмах снарядов приводит к цепной реакции с выделением большой энергии - взрыву. Так что сам взрыв гранаты возможен. Однако, для того, чтобы инициировать такую реакцию, к "начинке" гранаты необходимо подвести излишек энергии, для чего и нужен запал.

УЗРГМ - это унифицированный капсюльный запал, который (если не вдаваться в механику) состоит из капсюля, замедлителя и детонатора. После броска капсюль поджигает замедлитель, который горит несколько секунд и в свою очередь подрывает детонатор. Энергии, высвободившейся при взрыве детонатора, достаточно для того, чтобы подорвать тротил гранаты. Для этих процессов доступ кислорода из атмосферы тоже не нужен. В этом смысле очень показательны ролики взрывов гранат под водой - там тоже дефицит кислорода (хотя, нет пониженного давления, как в космосе).

Таким образом, взрыв гранаты в безвоздушном пространстве возможен. Однако какие у него будут последствия? У ручной гранаты два основных фактора поражения - взрывная волна (резкий скачок давления в среде) и, собственно, осколки корпуса. Если мы находимся в космосе, то взрывной волны не будет, потому как нет среды, которая испытывала бы удар. Продукты реакции плотной сферой разойдутся от точки подрыва, однако энергия этого облака будет рассеиваться тем сильнее, чем дальше оно будет распространяться - чем больше сфера, тем меньше давление. Ударной волной на расстоянии уже пары метров в космосе можно пренебречь.

Другое дело - осколки. Частицы разрушенного корпуса гранаты, получившие огромную кинетическую энергию, не встречают на своём пути практически никакого сопротивления: в невесомости их не притягивает Земля (им некуда падать, грубо говоря) и нет воздуха, со стороны которого они испытывали бы сопротивление. А это значит, что в космосе любая граната автоматически превращается в оборонительную, потому что, во-первых, разлёт осколков у неё будет просто колоссальный, а во вторых, разлетаясь, эти осколки будут сохранять скорость (около 700 м/с), а значит и радиус поражения гранаты будет очень большим. В частности, это значит, что ту же Ф-1 невозможно безопасно бросить в открытом космосе. С одной стороны, бросить её получится гораздо дальше, чем на Земле, однако из этого облака, порой, до трёхсот осколков Вам обязательно что-то вернётся и как минимум повредит Вам скафандр, а на то, чтобы спрятаться в условиях невесомости и того же самого скафандра у вас есть всего несколько секунд.

thequestion.ru

Астрономы зафиксировали таинственный взрыв в далеком космосе

Он мог быть вызван уничтожением или слиянием звезд

31.03.2017 в 18:42, просмотров: 7218

Специалисты, представляющие американское аэрокосмическое агентство NASA, зафиксировали крайне необычную рентгеновскую вспышку, объяснить происхождение которой астрофизики пока не могут. Уловить сигнал из космоса ученым удалось с помощью космического телескопа Chandra.

Астрономы зафиксировали таинственный взрыв в далеком космосе

фото: pixabay.com

На сайте NASA сообщение появилось под заголовком «Таинственный космический взрыв озадачил астрономов». То, что о новом наблюдении в подобных выражениях говорят даже не журналисты, а сами представители агентства, позволяет предположить, что в небольшой галактике, расположенной на расстоянии 10,7 миллиарда световых лет от Земли, действительно могло произойти нечто необычное.

Астрофизики сообщают, что за несколько минут поступающий от довольно тусклой галактики сигнал стал более ярким, чем все звёзды в ней вместе взятые, и затем стал плавно ослабевать. «Обычным» сигнал стал лишь немногим менее чем через сутки.

Причиной столь яркой вспышки должно было стать некое очень масштабное событие, однако более конкретно на вопрос, какой именно эта причина была, учёные пока не готовы. Впрочем, несколько версий они всё же выделяют. По одному из предположений, это могло быть столкновение и слияние двух нейтронных звёзд либо нейтронной звезды и чёрной дыры.

Согласно другой версии, вспышка могло быть разрушение белого карлика при приближении чёрной дыры. Наконец, не исключают учёные и того, что они стали свидетелями некоего нового и ранее ни разу не зафиксированного явления.

В скором времени научная работа, посвящённая недавним наблюдениям, будет представлена на страницах научного издания Monthly Notices of the Royal Astronomical Society, пока же она представлена на сервере препринтов Корнелльского университета.

www.mk.ru

Ядерные испытания в космосе: kiri2ll

Начавшаяся в 50-е годы прошлого века космическая гонка оставила после себя ряд приятных воспоминаний - отважные первопроходцы в космосе, рекорды, триумфы техники и ощущение того, что человеку подвластно все. Но не стоит забывать, что была и обратная сторона медали: космическая гонка являлась производной Холодной войны – и потому военные аспекты прямо или косвенно присутствовали в большинстве космических программ тех лет.

Но помимо спутников-шпионов, разведывательных орбитальных станций, космических бомбардировщиков был и еще один аспект “военного” космоса, о котором сейчас мало кто вспоминает – высотные ядерные испытания. Заполучив в свои арсеналы межконтинентальные баллистические ракеты, военные обоих сверхдержав вскоре захотели узнать, что же случится если взорвать в космосе ядерную бомбу. И их желание достаточно быстро исполнилось…

Операция “Аргус”

Первыми были американцы. В августе-сентябре 1958 года на юге Атлантики ими была осуществлена операция “Аргус” которая включала в себя подрыв трех ядерных зарядов в радиационных поясах Ван-Аллена с целью проверки последствий таких взрывов для систем связи и электроники спутников и баллистических ракет. Еще одной целью было подтверждение или опровержение теории о том, что такой взрыв создаст искусственный радиационный пояс Земли. Место испытаний было выбрано не случайно – именно на тех широтах находится т.н. Южно-атлантическая  аномалия, где радиационные пояса подходят ближе всего к поверхности Земли

Специально для операции из кораблей 2-го флота США было создано “оперативное соединение 88”, в состав которого вошло 9 судов и 4500 членов экипажей. Помимо собственно самих ядерных испытаний, с кораблей также запускались геодезические ракеты для сбора данных о взрыве, а в космос был специально выведен спутник Эксплорер-4, который должен был измерять уровень радиации в поясах Ван-Аллена. Первоначально, спутников должно было быть двое – но Эксплорер-5 запустить не удалось.Схема операцииПервое испытание было проведено 27 августа 1958 года на высоте 161 километр, второе 30 августа на высоте 292 километра, третьей 6 сентября на высоте 467 километров - что стало самым высотным ядерным взрывов за всю историю. Мощность каждого из взрывов составила 1.7 килотонны,  в качестве боеголовки использовались ядерные заряды типа W-25 мощностью весом  98,9 килограмм. Доставка “груза” в космос осуществлялась с помощью модифицированной баллистической ракеты X-17A, разработанной компанией “Локхид”. Ее длина с боевым зарядом составляла 13 метров, диаметр – 2,1 метра.Кадры запуска ракетыИспытания показали, что электромагнитный импульс от взрыва вполне способно повредить аппаратуру и вызвать серьезные перебои со связью. Кроме того, было доказана теория о возникновении искусственных радиационных поясов Земли.  Газета “Нью-Йорк Таймс” впоследствии назвала операцию Аргус “самым масштабным научным экспериментом в истории”. Что же касается соединения 88, то после возвращения домой, оно  было расформировано. Говорят,  что процент заболевания раком среди участников испытаний был намного выше, чем среди контрольных групп...

Хроника тех лет

Starfish prime

Если операция Аргус являлась секретной, то проведенное летом 1962 году испытание “Starfish prime” американцы устроили в лучших традициях шоу-бизнеса, широко разрекламировав взрыв и пригласив прессу и наблюдателей со всего мира.

Но первый блин как обычно вышел комом. Состоявшийся 29 июня 1962 года пуск баллистической ракеты Тор с термоядерной боеголовкой W49 на борту оказался аварийным. Двигатель ракеты отключился раньше положенного и потому центру управления пришлось включить механизм самоуничтожения ракеты. Заряд взрывчатого вещества разрушил боеголовку, часть обломков упала обратно на атолл Джонстон, другая часть – на расположенный неподалеку атолл Сэнд. Авария привела к относительно небольшому радиоактивному заражению местности.

9 июля состоялась вторая и в этот раз успешная попытка. Запущенная с атолла Джонстона ракета взорвалась на высоте 400 километров с мощностью в 1.4 мегатонны. Ядерное зарево было видно на острове Уэйк на расстоянии 2200 километров, на атолле Кваджалейн (2600 километров) и даже в Новой Зеландии, в 7000 километрах к югу от Джонстона.

Такую вспышку могли видеть жители Гонолулу

Советский спутник “Космос-5”, находясь на 1200 километров ниже горизонта взрыва, зарегистрировал мгновенный рост интенсивности гамма-излучения на несколько порядков с последующим снижением на два порядка за 100 секунд. После взрыва наблюдалось семиминутное зарево, а в последующие дни полярные сияния на непривычно низких широтах. После взрыва, на расположенных от него в 1500 километрах Гавайях было зафиксировано отключение электричества, выход из строя электроники и телефонной связи и ошибочное срабатывание сигнализации.Видео взрыва на одной из компиляций ядерных испытаний (5-30 на записи)

Учебный фильм армии США рассказывающих об испытаниях на атоле Джонстона

Были и космические последствия. Три спутника были сразу выведены из строя электромагнитным импульсом.  Появившиеся в результате взрыва заряженные частицы, были захвачены магнитосферой Земли, в результате чего их концентрация в радиационном поясе Земли увеличилась на 2—3 порядка. Фактически,  в магнитосфере Земли временно возник обширный и мощный радиационный пояс.Вид на зарево с борта самолета KC-135Воздействие этого пояса привело к очень быстрой деградации солнечных батарей и электроники еще у семи спутников, в том числе и у первого коммерческого телекоммуникационного спутника Телстар 1. В общей сложности взрыв вывел из строя треть космических аппаратов, находившихся на низких орбитах в момент взрыва.

Наличие этого пояса пришлось учитывать при планировании полетов пилотируемых космических кораблей “Восток-3” и “Восток-4” в августе 1962 года и “Меркурий-8” в октябре того же года. Последствия загрязнения магнитосферы были заметны в течение нескольких лет. Случись подобные испытания сейчас, и на более низкой высоте – по расчетам специалистов этого привело бы к выходу из строя 90% современной низкоорбитальной спутниковой группировки и невозможности на некоторое время осуществления пилотируемых полетов в космос.

Советский ответ

Если данные по операции Аргус были рассекречены еще в 1982 году, а испытание Starfish prime можно рассматривать помимо прочего и как PR-акцию, то про советские ядерные испытания  (Операция К) проведенные в октябре 1961 и октябре 1962 года  известно намного меньше.Если американцы взрывали ядерные бомбы в космосе с так сказать общеобразовательными целями (посмотреть что будет), то советские эксперименты ставили одну конкретную цель – проверку работоспособности создававшейся системы ПРО (известной как система А) в условиях ядерной войны.В каждом эксперименте производился последовательный пуск с ракетного полигона в Капустином Яре двух баллистических ракет «Р-12», направленных в «центр обороны» (полигон в Сары-Шагане), причем их головные части летели по одной и той же траектории одна за другой с некоторым запаздыванием друг от друга. Первая ракета была оснащена ядерным зарядом, который подрывался на заданной для данной операции высоте, а в головной части второй были размещены многочисленные датчики, призванные измерить параметры поражающего действия ядерного взрыва. В условиях реального ядерного взрыва вторую ракету перехватывала противоракета В-1000 системы “А”, оснащенная телеметрической (без боевого заряда) головной частью”.Карта места испытанийПервые эксперименты, имевшие обозначения “К-1” и ”К-2”, были проведены в течение всего одних суток – 27 октября 1961 года. Первый взрыв был произведен на высоте около 300 километров, второй – на высоте 150 километров. Поскольку данные об испытаниях до сих пор не рассекречены, приходится довольствоваться лишь парой скупых выдержек из воспоминаний конструкторов, если верить которым выходит, что "система А" сработала как надо, и свидетельствами очевидцев о яркой беззвучной вспышке в небе, нарушениях в работе РЛС и отсутствии радиосвязи в течении часа после взрыва. Кроме того, американские источники сообщают о нескольких пожарах, вызванных короткими замыканиями вследствие электромагнитного импульса.

Финальный аккорд

В октябре 1962 года человечество стояло на пороге третьей мировой войной детонатором для которой мог послужить разгоравшийся Карибский кризис. И именно тогда состоялись последние ядерные испытания в космосе. 20 октября 1962 в рамках испытания “Шах и мат” выпущенная с бомбардировщика B-52 ракета авиационная ракета XM-33 доставила 7 килотонный заряд на высоту 147 километров. Ответ СССР последовал незамедлительно.22, 28 и 1 ноября 1962 года в рамках все той же Операции К были взорваны три уже трехсоткилотонных заряда. Первые два испытания были космическими (взрывы на высотах 150 километров), испытание 1 ноября формально нет (высота 59 километров). В тот же день (1 ноября), американцы взорвали 497 килотонный заряд на высоте в 97 километров.

Эти испытания, проведенные в дни, когда мир висел на волоске от ядерной войны стали последними взрывами такого плана. В следующем году между сверхдержавами было наконец подписано соглашение о запрете любых атмосферных, наземных и подводных испытаний. Конечно, не все страны присоединились к этому договору (Китай например провел последнее атмосферное испытание в 1980 году), но к счастью без основных игроков ядерное безумие удалось вогнать в какие-то приемлемые рамки, а затем и постепенно прекратить.

7 октября 1963 года. Кеннеди подписал договор о частичном запрещении ядерных испытаний. Жить ему оставалось меньше двух месяцев.С тех пор прошло уже много лет. Состоялся полет Союза-Аполлона, Спейс шаттлы летали к Миру, а сейчас каждый желающий может ночью увидеть пример сотрудничества в космической сфере в виде огромной махины МКС, которая отлично видна невооруженным глазом. Конечно, многие противоречия никуда не делись, но к счастью они не идут ни в какое сравнение с временами Холодной войны. Остается надеяться, что история с ядерными испытаниями в космосе так и останется лишь полузабытым воспоминанием о временах, которые, надеюсь, больше  никогда не повторятся.

kiri2ll.livejournal.com

Испытания ядерного оружия в космосе

Читая сегодня статью о секретном американском космолете конечно же тема вырулила на гонку вооружений в космосе. И там упоминались ядерные испытания, которые уже были произведены в космосе.

А ведь мы уже стали забывать о той атомной вакханалии, которую устроили на рубеже 1950-х-1960-х годов две сверхдержавы – СССР и США. Тогда, совершенствуя свои системы вооружений, главные противники в глобальном противостоянии чуть ли не ежедневно взрывали ядерные и термоядерные устройства. Причем, проводились эти испытания во всех природных сферах: в атмосфере, под землей, под водой и даже в космосе. Положить конец этому безумию удалось только в 1963 году, когда СССР, США и Великобритания подписали договор о запрещении испытания ядерного оружия в трех средах (в атмосфере, под водой и в космическом пространстве).

Но к тому моменту человечество успело много чего “натворить”…

ОПЕРАЦИЯ “АРГУС”

Начало использования космического пространства в качестве ядерного испытательного полигона датируется летом 1958 года, когда в обстановке повышенной секретности в США началась подготовка к проведению операции “Аргус”. Американцы окрестили ее в честь всевидящего стоглазого бога из Древней Греции. Кому-то такая аналогия показалась уместной, хотя увидеть какую-либо связь между древнегреческим божеством и сутью проводимого эксперимента весьма проблематично.

Основной целью проведения операции “Аргус” являлось изучение влияния поражающих факторов ядерного взрыва, произведенного в условиях космического пространства, на земные радиолокаторы, системы связи и электронную аппаратуру спутников и баллистических ракет. По крайней мере, так ныне утверждают американские военные. Но это, скорее, были попутные эксперименты. А главная задача была в испытании ядерных зарядов. Кроме того, предполагалось изучить взаимодействие радиоактивных изотопов плутония, высвобождавшихся во время взрыва, с магнитным полем Земли.

Отправной точкой проведения эксперимента, как об этом принято писать сегодня, стала довольно эксцентричная, по тем временам, теория, выдвинутая сотрудником Радиационной лаборатории Лоуренса Николасом Кристофилосом. Он предположил, что наибольший военный эффект от ядерных взрывов в космосе может быть достигнут в результате создания искусственных радиационных поясов Земли, аналогичных естественным радиационным поясам (поясам Ван Аллена) .

Чтобы не возвращаться более к этому вопросу, сразу скажу, что проведенный эксперимент подтвердил выдвинутую теорию и искусственные пояса действительно возникали после взрывов. Их обнаружили приборы американского научно-исследовательского спутника “Эксплорер-4”, что позволило впоследствии говорить об операции “Аргус”, как о самом масштабном научном эксперименте, который когда-либо проводился в мире.

В качестве места проведения операции была выбрана южная часть Атлантического океана между 35° и 55° ю.ш., что обуславливалось конфигурацией магнитного поля, которое в этом районе наиболее близко расположено к поверхности Земли и которое могло сыграть роль своеобразной ловушки, захватывая заряженные частицы, образованные взрывом, и удерживая их в поле. Да и высота полета ракет позволяла доставить ядерный боеприпас только в эту область магнитного поля.

Для осуществления взрывов в космосе были использованы ядерные заряды типа W-25 мощностью 1,7 килотонны, разработанные для неуправляемой ракеты “Джин” класса “воздух – воздух”. Вес самого заряда составлял 98,9 килограмм. Конструктивно он был выполнен в виде обтекаемого цилиндра длиной 65,5 сантиметров и диаметром 44,2 сантиметра. До операции “Аргус” заряд W-25 испытывался трижды и продемонстрировал свою надежность. Кроме того, во всех трех испытаниях мощность взрыва соответствовала номинальной, что было важно при проведении эксперимента.

В качестве средства доставки ядерного заряда была использована модифицированная баллистическая ракета X-17A, разработанная компанией “Локхид”. Ее длина с боевым зарядом составляла 13 метров, диаметр – 2,1 метра.

Для проведения эксперимента была сформирована флотилия из девяти кораблей 2-го флота США, действовавшая под обозначением совершенно секретной оперативной группы № 88. Пуски производились с головного судна флотилии “Нортон-Саунд”.

Первое испытание было проведено 27 августа 1958 года. Точное время пуска ракеты, как и во время двух последующих экспериментов, неизвестно. Но, учитывая скорость и высоту полета ракеты, можно ориентировочно считать, что старт состоялся в интервале от 5 до 10 минут до времени взрыва, которое известно. Первый ядерный взрыв в космосе “прогремел” в 02:28 GMT того дня на высоте 161 километр над точкой земной поверхности с координатами 38,5° ю.ш. и 11,5° з.д., в 1800 километрах юго-западнее южноафриканского порта Кейптаун.

Через три дня, 30 августа, в 03:18 GMT второй ядерный взрыв был произведен на высоте 292 километра над точкой земной поверхности с координатами 49,5° ю.ш. и 8,2° з.д.

Последний, третий взрыв в рамках операции “Аргус”, “прогремел” 6 сентября в 22:13 GMT на высоте 750 километров (по другим данным – 467 километров) над точкой земной поверхности 48,5° ю.ш. и 9,7° з.д. Это самый высотный из космических ядерных взрывов за всю недолгую историю таких экспериментов.

Немаловажная деталь, о которой вспоминают не столь часто. Все взрывы в рамках операции “Аргус” являлись лишь частью проводимых экспериментов. Их сопровождали многочисленные пуски геофизических ракет с измерительной аппаратурой, которые проводились американскими учеными из различных районов земного шара непосредственно перед взрывами и спустя некоторое время после них.

Так, 27 августа были проведены пуски четырех ракет [ракеты “Джэйсон” № 1909 с мыса Канаверал в штате Флорида; двух ракет типа “Джэйсон” № 1914 и 1917 с Базы ВВС США “Рамей” в Пуэрто-Рико; ракеты “Джэйсон” № 1913 с полигона Уоллопс в штате Вирджиния]. А 30-31 августа с тех же самых стартовых позиций были запущены уже девять ракет. Правда, взрыв 6 января пусками не сопровождался, но наблюдения за ионосферой велись с помощью метеорологических зондов.

Так совпало, что советским специалистам удалось получить информацию о первом из американских космических взрывов. В день испытания, 27 августа, с полигона Капустин Яр были проведены пуски трех геофизических ракет: одной Р-2А и двух Р-5А. Измерительной аппаратуре, установленной на ракетах, удалось зафиксировать аномалии в магнитном поле Земли. Правда, чем были вызваны эти аномалии, стало известно чуть позднее

Подготовка и проведение операции “Аргус” было окружено плотной завесой секретности. Однако тайну удалось хранить совсем недолго. Спустя всего полгода, 19 марта 1959 года, газета “Нью-Йорк таймс” опубликовала статью, в которой во всех подробностях было рассказано о том, что делали американские военные в южной части Атлантики. Последним ничего не оставалось, как, скрепя сердце, признать и факт проведения ядерных испытаний в космосе, и огласить результаты проведенных измерений. Тем не менее, до сих пор не все подробности эксперимента стали доступны широкой общественности. С одной стороны это объясняется тем фактом, что прошел слишком большой срок, чтобы описываемые события претендовали на сенсационность. С другой стороны, в настоящее время вопрос проведения ядерных взрывов в космосе не столь актуален, как это было сорок лет назад, поэтому и интересуются им в меньшей степени, чем “современными ядерными проблемами”.

ОПЕРАЦИЯ “К”

Мораторий на ядерные испытания, действовавший в 1958-1961 годах, не позволил советской стороне немедленно отреагировать на операцию “Аргус”. Но вскоре после того, как он был прерван, Советский Союз провел аналогичные эксперименты. Испытания отечественных ядерных устройств в космосе проходили в рамках операции “К”. Их подготовкой и проведением занималась Государственная комиссия под председательством заместителя министра обороны СССР, генерал-полковника Александра Васильевича Герасимова. Научным руководителем экспериментов был назначен академик АН СССР Александр Николаевич Щукин, а его заместителем – заместитель начальника 4-го Главного управления Министерства обороны генерал-майор Константин Александрович Трусов. Основной задачей при проведении операции “К” являлась проверка влияния высотных и космических ядерных взрывов на работу радиоэлектронных средств систем обнаружения ракетного нападения и противоракетной обороны (системы “А”).

Первые эксперименты, имевшие обозначения “К-1” и ”К-2”, были проведены в течение всего одних суток – 27 октября 1961 года. Оба боеприпаса мощностью 1.2 кт были доставлены к местам взрыва (над центром опытной системы “А” на полигоне Сары-Шаган) баллистическими ракетами Р-12 (8К63), запущенными с полигона Капустин Яр. Первый взрыв был произведен на высоте около 300 километров, а второй – на высоте около 150 километров.

Кардинальным отличием советских экспериментов от американских ядерных взрывов в космосе является то, что они имели четкую функциональную направленность – проверка работы системы противоракетной обороны. В связи с этим и алгоритм испытаний был иным, чем в рамках операции “Аргус”, где во главу угла ставился именно взрыв, а не работоспособность иных видов техники.

Как впоследствии рассказал главный конструктор системы “А” Григорий Васильевич Кисунько в своей книге “Секретная зона”, “планом каждого из испытаний серии “К” предусматривался последовательный пуск двух ракет Р-12. Первая несла ядерный заряд, вторая оснащалась аппаратурой для регистрации поражающего действия ядерного взрыва. В условиях реального ядерного взрыва вторую ракету перехватывала противоракета В-1000 системы “А”, оснащенная телеметрической (без боевого заряда) головной частью”.

Проведение операции “К” было продолжено ровно через год – в октябре 1962 года. Тогда было проведено три взрыва, но один из них относится к разряду высотных, так как производился на высоте 80 километров, поэтому о нем я не буду ничего говорить, а расскажу только о тех, которые проходят в литературе под индексами “К-3” и ”К-4”.

Утром 22 октября со стартовой позиции полигона Капустин Яр была запущена баллистическая ракета Р-12, в головной части которой размещался ядерный заряд мощностью 300 кт. Как видим, мощность этого устройства была значительно больше, чем применяли американцы в операции “Аргус” или во время пусков “К-1” и ”К-2”, но меньше, чем во время американского испытания летом 1962 года, о котором я буду писать позднее. Спустя 11 минут на высоте около 300 километров зажглось искусственное Солнце.

Во время испытания решалось сразу несколько задач. Во-первых, это была очередная проверка надежности носителя ядерного заряда – баллистической ракеты Р-12. Во-вторых, проверка срабатывания самого заряда. В-третьих, выяснение поражающих факторов ядерного взрыва и его воздействие на различные образцы военной техники, в том числе на ракеты и военные спутники. В-четвертых, должны были пройти проверку основные принципы предложенной Владимиром Николаевичем Челомеем системы противоракетной обороны “Таран”, предусматривавшей поражение ракет противника серией ядерных взрывов на их пути.И время проведения испытания “К-3” было выбрано совсем не случайно. За двое суток до взрыва с полигона Капустин Яр был запущен искусственный спутник Земли типа ДС-А1 (открытое наименование “Космос-11”), предназначенный для исследования излучений, возникающих при ядерных взрывах на больших высотах, в широком диапазоне энергий и эффективностей, отработки методов и средств обнаружения высотных ядерных взрывов и получения других данных. Информация, которую собирались получить и получили советские ученые от этого спутника, оказалась чрезвычайно ценной для разработки систем вооружения следующих поколений.

Кроме того, этот взрыв в космосе можно было рассматривать и как демонстрацию советской мощи в условиях бушевавшего в те дни “Карибского кризиса”. Вообще-то, это было весьма рискованное мероприятие с трудно прогнозируемыми последствиями. У военного руководства СССР и США нервы были на пределе, и любое недостаточно продуманное решение, особенно проявление военной активности, могло быть превратно истолковано и закончиться всемирным катаклизмом. На наше счастье все завершилось благополучно.

Программа эксперимента “К-3” была значительно шире, чем проведенные за год до этого испытания. Кроме двух баллистических ракет Р-12 и противоракет полигона в Сары-Шагане предполагалось задействовать ряд геофизических и метеорологических ракет, а также межконтинентальную баллистическую ракету Р-9 (8К75), запуск которой должен был состояться с 13-й пусковой установки полигона Тюра-Там в рамках 2-го этапа летно-конструкторских испытаний. Головная часть этой ракеты должна была пройти максимально близко к эпицентру взрыва. При этом предполагалось исследовать надежность радиосвязи аппаратуры системы радиоуправления, оценить точность измерения параметров движения и определить влияние ядерного взрыва на уровень принимаемых сигналов на входе бортовых и наземных приемных устройств системы радиоуправления.

Однако, пуск Р-9 в тот день завершился неудачей. Через 2,4 секунды после старта разрушилась 1-я камера сгорания 1-й ступени, и ракета упала в 20 метрах от стартового стола, серьезно его повредив.

Четвертый ядерный взрыв в рамках операции “К” был проведен 28 октября 1962 года. По сценарию этот эксперимент совпадал с предыдущим, с той разницей, что “девятка” должна была стартовать с опытной наземной пусковой установки № 5. Старт Р-12 с ядерной боеголовкой произошел в 04:30 GMT с полигона Капустин Яр. А спустя 11 минут на высоте 150 километров была проведена детонация ядерного устройства. Система “А” отработала без замечаний.

А вот пуск Р-9 с полигона Тюра-Там вновь окончился аварией. Ракета оторвалась от стартового стола в 04:37:17 GMT, но успела подняться на высоту всего 20 метров, когда вышла из строя 2-я камера сгорания двигательной установки 1-й ступени. Ракета осела и упала на пусковую установку, столб пламени взметнулся высоко в небо. Таким образом, всего за шесть дней серьезные повреждения получили две пусковые установки для Р-9. Больше в испытаниях их не использовали.

Взрывом 28 октября заканчивается не только история советских ядерных испытаний в космосе, но и эпоха использования околоземного пространства как полигона для испытания этого смертоносного вооружения.

ЕЩЕ ДВА ВЗРЫВА В КОСМОСЕ

И в завершении повествования расскажу еще о двух американских ядерных экспериментах в космосе. Даты их проведения лежат в интервале между первой и второй фазами операции “К”, поэтому и говорить о них приходится особо.

Одно из этих испытаний состоялось летом 1962 года. В рамках операции “Фишбоул” предполагалось провести взрыв ядерного заряда W-49 мощностью 1,4 Мт на высоте около 400 километров. Этот эксперимент проходил у американских военных под кодовым наименованием “Старфиш” (“Звездная рыба”).

Первый блин в тот раз оказался комом. Состоявшийся 20 июня с площадки LE1 атолла Джонсон в Тихом океане пуск баллистической ракеты “Тор” (сер. № 193) был аварийным – на 59-й секунде полета произошло отключение двигателя ракеты. Офицер, отвечающий за безопасность полета, через шесть секунд отправил на борт команду, которая привела в действие механизм ликвидации. На высоте 10-11 километров ракета была взорвана. Заряд взрывчатого вещества разрушил боеголовку без приведения в действие ядерного устройства. Часть обломков упала обратно на атолл Джонстон, другая часть – на расположенный неподалеку атолл Сэнд. Авария привела к небольшому радиоактивному заражению местности.

Эксперимент повторили 9 июля того же года. Была задействована ракета “Тор” с серийным номером 195. На этот раз все прошло успешно. Взрыв выглядел просто потрясающе – ядерное зарево было видно на острове Уэйк на расстоянии 2200 километров, на атолле Кваджалейн (2600 километров) и даже в Новой Зеландии, в 7000 километрах к югу от Джонстона!

В отличии от испытаний 1958 года, когда “прогремели” первые ядерные взрывы в космосе, испытание “Старфиш” быстро получило огласку и сопровождалось шумной политической кампанией. За взрывом наблюдали космические средства США и СССР. Так, например, советский спутник “Космос-5”, находясь на 1200 километров ниже горизонта взрыва, зарегистрировал мгновенный рост интенсивности гамма-излучения на несколько порядков с последующим снижением на два порядка за 100 секунд. После взрыва в магнитосфере Земли возник обширный и мощный радиационный пояс. По крайней мере, три спутника, заходившие в него, были повреждены из-за быстрой деградации солнечных батарей. Наличие этого пояса пришлось учитывать при планировании полетов пилотируемых космических кораблей “Восток-3” и “Восток-4” в августе 1962 года и “Меркурий-8” в октябре того же года. Последствия загрязнения магнитосферы были заметны в течение нескольких лет.

И, наконец, последний ядерный взрыв в космосе был проведен 20 октября 1962 года. В документах Министерства обороны США это испытание проходило под кодовым наименованием “Чикмэйт”. Взрыв произошел на высоте 147 километров над поверхностью Земли в 69 километрах от атолла Джонсон. К месту подрыва ядерная боеголовка типа XW-50X1 была доставлена авиационной ракетой XM-33 “Струпи”, выпущенной с борта бомбардировщика Б-52 “Стратофортресс”. Данные о мощности взрыва разнятся. Одни источники называют цифру менее 20 кт, а другие – 60 кт. Но нас интересует, в данном случае, не эта цифра, а место проведения испытания. А это был космос.

Итак, давайте подведем краткие итоги ядерных испытаний в космосе. Всего было проведено девять взрывов: американцы взорвали пять ядерных зарядов, Советский Союз – четыре заряда. Другие ядерные державы, на наше счастье, не поддержали начавшуюся было ядерную гонку в космосе. И в будущем, будем надеяться, такого не случится.

[источники]источникиСписок использованной литературы:

1. Агапов В.М. К запуску первого ИСЗ серии ДС // Новости космонавтики, 1997. № 6.2. Афанасьев И.Б. Р-12 «Сандаловое дерево». // Приложение к журналу М-Хобби. – М.: ЭксПринт НВ, 1997.3. Железняков А.Б. Тайны ракетных катастроф: Плата за прорыв в космос. – М.: Эксмо-Яуза, 2004.4. Железняков А., Розенблюм Л. Ядерные взрывы в космосе. // Новости космонавтики, 2002, № 9.5. Кисунько Г.В. Секретная зона: Исповедь генерального конструктора. – М.: Современник, 1996.6. Первов М.А. Ракетное оружие РВСН. – М.: Виоланта, 1999.7. Ракеты и космические аппараты конструкторского бюро «Южное» // Сост. А.Н.Мащенко и др. под общ. ред. С.Н.Конюхова. – Днепропетровск, ООО «КолорГраф», ООО РА «Тандем-У», 2001.8. Темный В.В. История открытия радиационных поясов Земли: кто же, когда и как? // Земля и Вселенная. 1993. № 5.9. Черток Б.Е. Ракеты и люди. Фили–Подлипки–Тюратам. – М.: Машиностроение, 1996.10. Ядерные испытания СССР / Кол. авторов под ред. В.Н.Михайлова. – М.: ИздАТ, 1997.11. Ядерный архипелаг / Сост. Б.И.Огородников. – М.: ИздАТ, 1995.

("Атомная стратегия", июнь 2005 г.).http://www.cosmoworld.ru/spaceencyclopedia/publications/index.shtml?zhelez_33.html

Вот, кстати, Советские звездные войны глазами американцев и Советская космическая пушка

masterok.livejournal.com