Ночное видение: больше продвинутых прицелов для продвинутых солдат. Прицел ночного видения военный


Приборы ночного видения и тепловизоры или как найти черную кошку в темной комнате

Зрение – наиболее важное чувство восприятия человека. Через данный канал мы получаем большую часть информации о внешнем мире. Наши глаза – это удивительно сложный и совершенный механизм, подаренный нам природой. Но к сожалению возможности их ограничены.

Человек способен воспринимать только очень узкий спектр электромагнитного излучения (он еще называется видимым участком спектра), кроме того, глаз может воспринимать «картинку» только при довольно большом уровне освещенности. Например, если он падает ниже уровня 0,01 люкса, то мы теряем возможность различать цвета объектов и можем видеть только крупные предметы, находящиеся неподалеку.

Это вдвойне обидно, ведь из-за такой особенности нашего органа зрения мы становимся практически слепыми в темное время суток. Человек всегда завидовал другим представителям животного царства, для которых ночная мгла не является преградой: кошкам, совам, волкам, летучим мышам.

Особенно не нравилась подобная ограниченность человеческого зрения военным. Но кардинально изменить ситуацию удалось лишь в середине прошлого столетия, когда благодаря достижениям физики появились приборы ночного видения, позволяющие видеть ночью, почти так же ясно, как и днем.

В настоящее время приборы ночного видения находятся не только в армейских арсеналах, их с удовольствием используют спасатели, охотники, охранные подразделения, специальные службы. А если говорить о тепловизорах, то перечень их использования еще шире.

Сегодня в свободной продаже находится огромное количество самых разнообразных типов и видов приборов ночного видения (ПНВ), выполненных в виде биноклей, моноклей (монокуляров), прицелов или обычных очков. Однако прежде чем говорить про устройство прибора ночного видения, следует несколько слов сказать о физических принципах, на которых основана работа подобных приборов.

Общее описание

Работа приборов ночного видения и тепловизоров основана на физических явлениях внутреннего и внешнего фотоэффекта.

Суть явления внешнего фотоэффекта (или фотоэлектронной эмиссии) заключается в том, что твердые тела под воздействием света испускают электроны, которые и улавливаются ПНВ. Основой любого прибора ночного видения является ЭОП – электронно-оптический преобразователь, который улавливает слабый отраженный свет, усиливает его и превращает его в электронный сигнал. Именно его и видит человек в объективе ПНВ. Следует понимать, что ни один прибор ночного видения неспособен «видеть» в абсолютной темноте. Правда, существуют и активные ПНВ, которые используют для освещения объектов собственный источник инфракрасного излучения.

Любой прибор ночного видения состоит из трех основных составляющих: оптической, электронной и еще одной оптической. Свет принимается объективом, который затем фокусирует его на ЭОП, где фотоны превращаются электронный сигнал. Максимально усиленный сигнал передается на люминесцентный экран, где он опять превращается в привычное для человеческого глаза изображение. Вышеописанная конструкция в целом характерна для любого поколения ПНВ, просто современные приборы ночного видения (второе и третье поколение) имеют более продвинутую систему усиления сигнала.

Тепловизоры же улавливают собственное излучение любого тела или предмета, температура которого отлична от абсолютного нуля. Основной частью тепловизоров являются так называемые болометры – сложные фотоприемные устройства, которые улавливают инфракрасные волны. Подобные датчики чувствительны к длинам волн, соответствующих диапазону температур от -50 до +500 градусов Цельсия.

На самом деле, тепловизоры имеют довольно простую конструкцию. Каждый подобный прибор состоит из объектива, тепловизионной матрицы и блока обработки сигнала, а также экрана, на который выводится готовое изображение. Тепловизоры бывают двух видов: с охлаждаемой и неохлаждаемой матрицей. Первые являются наиболее чувствительными, дорогими и массивными. Их матрица охлаждается до температуры -210 до -170o C, обычно для этого используют жидкий азот. Чаще их используют на крупной военной технике (например, любой танковый прибор ночного видения).

Тепловизоры с неохлаждаемой матрицей на порядок дешевле стоят, они меньше по размеру, но и чувствительность их гораздо ниже. Однако большая часть тепловизоров, которые сегодня представлены на рынке (до 97%), относится именно к этой категории.

Одной из главных особенностей тепловизоров – которая во многом и обуславливает их высокую стоимость – являются их объективы. Дело в том, что обычное стекло, которое используется в большинстве оптических приборов, абсолютно непрозрачно для инфракрасного излучения. Поэтому для объективов тепловизоров используются такие редкие материалы, как германий, рыночная цена которого составляет примерно 2 тыс. долларов за кг. Средний германиевый объектив для тепловизора стоит около 7 тыс. долларов, а цена хорошего может доходить до 20 тыс. долларов. Сегодня и в России, и за рубежом активно ищут замену германию, это может снизить стоимость тепловизора на 40-50%.

История ПНВ и их классификация

Если говорить о приборах ночного видения, то их классификация основана на чувствительности фотокатода, степени усиления света, а также разрешении в центре полученного изображения. Как правило, выделяют три поколения ПНВ: первое, второе и третье. Кроме того, к отдельному поколению нередко относят ранние приборы ночного видения с дополнительным источником инфракрасного излучения. На сайтах производителей можно встретить информацию о ПНВ так называемых промежуточных поколений, вроде 1+ или 2+. Однако подобная градация больше преследует маркетинговые цели, чем является отображением реальных отличий.

Совершенствование конструкции ПНВ и появления новых поколений этих приборов шло последовательно, одно за другим. Поэтому классификацию приборов ночного видения удобнее давать вместе с их историей их развития.

23 августа 1914 года близ бельгийского города Остенде немцам удалось с помощью теплопеленгаторов обнаружить британскую эскадру, состоящую из броненосных крейсеров и миноносцев. И не просто обнаружить, но и корректировать с помощью этих приборов артиллерийский огонь, не давая кораблям противника приблизиться к важному порту. Считается, что именно с этого момента началась история приборов ночного видения.

В 1934 году произошел настоящий прорыв в этой области: голландец Холст создал первый в мире электронно-оптический преобразователь (ЭОП). Двумя годами позже российский эмигрант Зворыкин разработал ЭОП с электростатической фокусировкой сигнала, который позже стал «сердцем» первого коммерческого ПНВ американской компании Radio Corporation of America.

Периодом бурного развития ПНВ стала Вторая мировая война. Лидером в их разработке и применении стала гитлеровская Германия. Первый прототип прицела ночного видения был создан немецкой компанией Allgemeine Electricitats-Gesellschaft (AEG) в 1936 году, он предназначался для установки на противотанковых пушках Pak 35/36 L/45.

К 1944 году немецкие противотанковые пушки Pak 40 могли вести огонь, используя приборы ночного видения, на дистанции до 700 метров. Примерно в это же время танковые войска вермахта получили ПНВ Sperber FG 1250, благодаря использованию которого состоялось последнее крупное немецкое наступление на Восточном фронте, неподалеку от венгерского озера Балатон.

Все вышеперечисленные приборы ночного видения относятся к так называемому нулевому поколению. Подобные устройства отличались очень слабой чувствительностью, поэтому для нормальной их работы необходим был дополнительный источник инфракрасного света. Так, например, каждые пять немецких танков, оснащенных Sperber FG 1250, сопровождал бронетранспортер с мощным инфракрасным локатором Uhu («Филин»). Кроме того, ПНВ нулевого поколения имели ЭОП, чувствительные к ярким вспышкам света. Именно поэтому в конце войны советские войска часто использовали в наступлении обычные прожекторы. Они попросу слепили немецкие ПНВ.

Были у немцев попытки создать и ПНВ, которые бы обеспечивали большую дальность видения (до 4 км), но из-за значительных размеров ИК-прожектора от них отказались. В 1944 году в войска была отправлена опытная партия (300 шт.) ПНВ Vampir, которая предназначалась для установки на немецкие штурмовые винтовки «Штурмгевер». В его состав, кроме непосредственно прицела, входил ИК-прожектор и аккумуляторная батарея. Общий вес прибора превышал 30 кг, дальность – 100 метров, а время его работы составляла всего лишь 20 минут. Несмотря на эти довольно скромные показатели, немцы активно использовали «Вампир» в ночных боях завершающего этапа войны.

Попытки создания ПНВ нулевого поколения были и в Советском Союзе. Еще до войны для танков семейства БТ был разработан комплекс «Дудка», позже аналогичная система появилась и для Т-34. Также можно вспомнить отечественный прибор ночного видения Ц-3, который разрабатывался для пистолетов-пулеметов ППШ-41. Подобным оружием планировали оснастить штурмовые подразделения. Однако широкого распространения ПНВ в Красной армии так и не получили. В тот период приборы ночного видения все еще были экзотикой, а Советскому Союзу во время Великой Отечественной войны было точно не до нее.

Опыт Второй мировой войны показал, что приборы ночного видения имеют прекрасные перспективы. Стало ясно, что эта технология может серьезно изменить способ ведения боевых действий не только на суше, но и в воздухе, и на море. Однако для этого ПНВ нулевого поколения должны были избавиться от большого количества присущих им недостатков, главным из которых была их низкая чувствительность. Она не только ограничивала дальность использования ПНВ, но и принуждала использовать вместе с прибором громоздкий и весьма энергоемкий ИК-прожектор. Да и в целом конструкция первых ПНВ была слишком сложной и не отличалась достаточной надежностью.

Вскоре на смену примитивным ПНВ военного периода пришли приборы первого поколения, основанные на ЭОП с электростатической фокусировкой. Они были способны усиливать входной сигнал в несколько тысяч раз. Что, в свою очередь, позволило отказаться от дополнительной подсветки. ИК-прожекторы не только излишне утяжеляли систему, но и значительно демаскировали бойца на поле боя. Пика своего совершенства ПНВ первого поколения достигли к 60-м годам прошлого века, американцы активно использовали их во время Вьетнамской войны.

Приборы ночного видения второго поколения появились благодаря появлению революционной микроканальной технологии, это случилось в 70-е годы. Суть ее заключалась в том, что теперь оптические пластины усеивались пустотелыми трубками-каналами диаметром 10 мкм и длиной не более 1 мм. Их количество и определяло разрешение светопроводящей пластины. Фотон света, попадая в каждый из подобных каналов, вызывает выбивание целого каскада электронов, что значительно усиливает чувствительность прибора. Для ПНВ второго поколения усиление может достигать 40 тыс. раз. Их чувствительность составляет 240-400 мА/лм, а разрешение – 32-56 штр/мм.

В Советском Союзе на основе этой технологии были созданы очки ночного видения «Квакер», а в США – AN/PVS-5B.

Позже появились приборы ночного видения, в которых электростатическая линза отсутствует вовсе и происходит прямой перенос электронов к пластине с микроканалами. Такие ПНВ обычно относят к поколению 2+. На основе подобной схемы изготовлены отечественные очки ночного видения «Наглазник» или их американский аналог AN/PVS-7.

Дальнейшие усилия ученых по улучшению приборов ночного видения были направлены на усовершенствование фотокатода. Инженеры компании Philips предложили изготавливать его из нового полупроводникового материала – арсенида галлия.

Так появились приборы ночного видения третьего поколения. По сравнению с традиционным мультищелочным фотокатодом его чувствительность выше на 30%, что позволяет проводить наблюдение даже в условиях облачной безлунной ночи. Проблема только в том, что новый материал можно изготавливать только в условиях глубокого вакуума, и этот процесс весьма трудоемок. Поэтому стоимость такого фотокатода на порядок выше, чем у его предшественников. Хотя, ПНВ третьего поколения могут усиливать входящий свет в 100 тыс. раз. Еще можно добавить, что изготавливать в промышленных масштабах арсенид галлия могут только в двух странах – в США и России. Голландцы из Philips предпочитают не заниматься этим, а получать лицензионные отчисления от производителей.

Если вы где-нибудь увидите информацию о продаже ПНВ четвертого поколения, то имейте в виду, скорее всего, вас обманывают. Их пока не существует, непонятно даже, какими пользоваться критериями для определения этой группы ПНВ. Хотя, конечно же, исследования по совершенствованию существующих «ночников» ведутся в десятках стран мира. Для тепловизоров ищут бюджетную замену стекла из германия, основной проблемой ПНВ является поиск более дешевого аналога арсенид-галлиевых фотокатодов. В начале нулевых годов американцы заявили о создании ПНВ нового поколения, но часть экспертов считает, что его, скорее можно назвать поколением 3+.

Области применения и перспективы

Приборы, которые позволяют человеку видеть ночью, с каждым годом становятся все популярнее и находят себе новые области применения. Современные «гражданские» ПНВ имеют вполне доступную стоимость, поэтому их могут позволить себе и охотники, и охранные структуры, а также другие категории граждан, которым необходимо ночное видение.

Самое интересное, что сегодня на рынке присутствуют все три поколения ПНВ. Многие приборы ночного видения для охоты относятся к первому поколению или даже нулевому и имеют ИК-подсветку, что абсолютно не приемлемо для военных ПНВ. Хотя, на «гражданке» используются и устройства третьего поколения (в них видно даже в подвалах). Технологии, которые применяются при их создании, уже давно не являются секретными, просто они очень дорого стоят. Прицелы ПНВ также могут быть изготовлены с использованием элементов различных поколений.

Использование тепловизоров также давно уже перестало быть исключительной прерогативой военных. Кроме охоты и наблюдения в темное время суток, подобные приборы все шире применяются в научных исследованиях. С их помощью, например, проверяют космические корабли перед стартом: тепловизор прекрасно показывает различные утечки, которые могут привести к катастрофе. Незаменим тепловизор и в энергетике. Этот прибор может легко показать, где из здания наиболее активно уходит тепло, а также позволит обнаружить места максимальных нагрузок в энергетических сетях. Применяют тепловизоры и медицине: по температурной карте человеческого тела можно даже ставить некоторые диагнозы. С каждым годом подобные приборы становятся все дешевле, поэтому сфера их применения неуклонно расширяется.

militaryarms.ru

Отечественные приборы ночного видения » Военное обозрение

Задача эффективно использовать ночное время для решения тактических задач при ведении боевых действий всегда стояла перед военачальниками.

Технология и практика

Разработка приборов ночного видения (ПНВ) учеными и инженерами в нашей стране активно началась в 30-х годах ХХ века. Именно в это время появились первые фотоэлектронные приборы. Как верно отметил один из блогеров, специалист по этому вопросу Кирилл Рябов: «Одна ветвь развития этого направления породила телевидение и современное цифровое видео, а вторая привела к появлению электронно-оптических преобразователей (ЭОП), являющихся основой для приборов ночного видения».Принцип действия

Типовой ПНВ состоит из объектива, ЭОП с блоком питания и окуляра. Принцип его работы вкратце таков: отраженный от объекта наблюдения свет проходит через объектив и создает изображение на входе (катоде) ЭОП, которое электронным способом усиливается и, проецируясь в желто-зеленом свечении на выходном экране преобразователя, передается через окуляр на глаз наблюдателя.

Отличительная особенность этих типов приборов в том, что изображение четкое только в центре, с искажением и меньшим разрешением по краю. Кроме того, если в поле зрения попадают яркие источники света, например фонари, светящиеся окна домов и подобные им, то они могут засветить все изображение, препятствуя возможности наблюдения.

По принципу действия все ПНВ делятся на два класса: приборы, использующие отраженный от целей и местных предметов свет Луны, звезд (пассивные) или искусственных источников – инфракрасных осветителей (активные), и приборы, использующие преимущественно собственное тепловое излучение целей и местных предметов, о которых речь ниже.

ПНВ. Исторический экскурс

Одним из первых ПНВ в Советском Союзе стала система «Квант», в основе которой лежал принцип инфракрасного излучения. Для работы прибора был необходим отраженный от окружающих объектов инфракрасный свет, а сам ЭОП имел фотокатод и люминесцирующий экран. (Подобная система, кстати, используется до сих пор, хотя и вынуждена конкурировать с другими типами ПНВ.)

Сам «Квант» – достаточно крупногабаритный по своим размерам комплекс – сначала планировалось устанавливать на самолетах. Однако позже проект был перенацелен на танки. Разрабатывались подобные системы и для ВМФ. К началу Великой Отечественной войны только Черноморский флот располагал 15 комплектами корабельных систем ночного видения. А к середине осени 1941-го моряки-черноморцы получили еще 18. Осенью 1943 года сотрудники Всероссийского электротехнического института создали ночной прицел для стрелкового оружия. По понятным причинам его не удалось укомплектовать прожектором подсвета. Тем не менее, при использовании внешнего источника ИК-излучения система работала неплохо. Претензии вызывала небольшая дальность действия – даже в 1945 году у лучших прототипов этот показатель не превышал 150–200 метров.

По окончании Великой Отечественной войны наши ученые получили возможность сравнить свои разработки с трофейными. Оказалось, что хваленая немецкая аппаратура по своим показателям практически не отличалась от отечественной.

ПНВ продолжали совершенствоваться, приоритет отдавался то одному, то другому типу подсветки прибора. Так, в 70-х – начале 80-х годов ХХ века резко возрос интерес к приборам активного типа вследствие использования для них в качестве осветителей лазеров, работающих в импульсном режиме. Цель при этом освещается короткими импульсами лазерного излучения. Поскольку прибор включается только тогда, когда объектива достигают лазерные импульсы, отраженные от цели, в ПНВ не попадают паразитные импульсы от местных предметов, находящихся впереди и позади цели, а также отраженные от взвешенных в атмосфере частиц пыли, влаги, дыма. В результате дальность наблюдения значительно возрастает по сравнению с подсветкой обычными ИК прожекторами.ТВП. Современные разработкиВскоре появились приборы нового типа, которые вполне можно отнести к ПНВ, но, поскольку они преобразуют тепловое излучение в видимое изображение, чаще их называют тепловизионными приборами (ТВП). Разработка последних началась в 60-е годы ХХ века. Между двумя типами приборов нет принципиальной конкуренции, но следует отметить, что только в 2009–2010 годах объемы продаж «тепловизоров» выросли более чем в два раза! Принципиальная разница между ПНВ и ТПВ состоит в источнике освещения, который нужен первому и без которого обходится второй.

Наиболее перспективным направлением развития этого типа прибора является применение технологии неохлаждаемых болометров, основанной на сверхточном определении изменения сопротивления тонких пластинок под действием теплового излучения всего спектрального диапазона. В силу этого тепловизор – прибор дорогостоящий. Для его создания применяются редкие металлы, например германий, поэтому в настоящее время ведутся поиски более дешевых материалов.

Важно отметить, что несмотря на санкции, которые введены США и странами ЕС против России и существенно затронули наш оборонно-промышленный комплекс, мы не свернем это перспективное направление вооружения, поскольку в стране налажено собственное производство этих приборов. Их выпускают ОАО ЦНИИ «Циклон» и НПЦ «Спектр АТ».

К основным маркам отечественных тепловизоров, стоящих сегодня на вооружении российской армии и ВВ МВД РФ, можно отнести приборы «Сыч-3ЦУ» и «Катран-3», которые «по своим ТТХ не уступают зарубежным аналогам и удовлетворяют всем требованиям современной экипировки, – как считает эксплуатирующий их полковник И.Козленко. – Основная сфера их применения – разведка, охрана объектов, оценка степени маскировки объектов, поиск раненых и пострадавших, обнаружение мин и тайников, несанкционированных, скрытых захоронений».

Оба прибора предназначены для работы в круглосуточном режиме в любых погодных условиях. Обе камеры позволяют увидеть человека на дистанции около 1 километра, а распознать его – с расстояния 500–600 метров. «Сыч» к тому же способен не только обнаружить цель, но и определить ее координаты с отображением информации на электронной карте местности. При этом прибор не нуждается в специальном и техническом обслуживании в течение 10 лет! Тепловизор «Катран» в свою очередь более практичен, оснащен дисплеем высокого разрешения.

Новейшим прибором тепловидения можно назвать портативную камеру-дальномер «Сыч-4». В ней применены передовые технологии неохлаждаемых микроболометров и безопасных лазерных дальномеров. Удачное сочетание современных технологий позволяет эффективно использовать камеру в любых системах безопасности и охраны, а встроенная система записи изображений позволяет проводить документирование в течение всего рабочего времени камеры. В силу объективных причин ТВП, в отличие от ПНВ, пока не могут устанавливаться на стрелковое оружие, но используются как автономно, так и в любых комбинациях на штатной технике.Полевой опыт

Данные приборы активно применяются (в основном подразделениями ФСБ, спецназа и разведки) в районах Северного Кавказа, где вводится режим контртеррористической операции. Там они являются одним из основных средств тактической оптико-электронной разведки, используемых во всепогодных условиях. По отзывам военнослужащих, активно пользующихся ТПВ, как один из побочных отрицательных эффектов у них отмечается ухудшение зрения. В некоторых ситуациях (например, при работе в помещении) тепловизоры значительно уступают ПНВ, так как при избытке тепла оператору тяжело определить четкие очертания живой цели.

По мнению военнослужащих спецподразделения МВД, использующих в работе как отечественные ПНВ, так и ТПВ, в идеале им нужен компактный, всепогодный прибор-прицел с двумя ветвями, совмещающий их характеристики. Главный критерий – качественная, неразмытая картинка и возможность идентификации объекта.

Свой опыт есть и у пограничников, которые традиционно в числе первых получают на вооружение новейшие разработки подобных образцов техники. Потребность в тепловизорах у них особенно высока на равнинных пограничных территориях, где такие приборы особенно эффективны. Модификация тепловизионной камеры для них будет носить название «Мути». Эта камера с автофокусировкой внешне не отличается от распространенных систем видеонаблюдения.

В качестве удачного примера использования специальных приборов в поисково-разведывательных мероприятиях на Северном Кавказе можно привести факт, рассказанный корреспонденту «Нового оборонного заказа» сержантами Александром К. и Ибрагимом М.В одном из районов на севере Дагестана их подразделением была заблокирована банда. Местность равнинная, с плотным пересечением каналов для полива сельхозугодий, вдоль каналов и арыков все заросло камышом. Маневренной группе спецназа поставлена задача: осуществлять осмотр местности с помощью тепловизионных приборов. В одном из мест, в большой заросли камыша, оператору удалось обнаружить контрастную цель, которую уничтожили прицельным огнем из пулемета. После досмотра на этом месте был обнаружен погибший вооруженный боевик.

topwar.ru

Армейский прибор ночного видения - история разработок и модели с характеристиками

Армейский прибор ночного видения

«Одна ветвь развития этого направленияпородила телевидение и современноецифровое видео, а втораяпривела к появлению электронно-оптическихпреобразователей (ЭОП),являющихся основой дляприборов ночного видения».Кирилл Рябов, разработчик

Сокращения:

  • ПНВ — прибор ночного видения.
  • ИК — инфракрасный.
  • ЭОП — электронно — оптический преобразователь.

Принцип работы ПНВ

При помощи катода усиливает ночной свет, преобразуя невидимые человеком ИК-лучи в хорошо видимый спектр. Изображение фотокатод передаёт на люминесцентный экран, и картинка становится видимой. На практике существует большое количество ПНВ старых разработок типа ПНВ-57е, задействованы и новейшие третьего поколения, спаренные с тепловизором.

Функция ПНВ ПНВ первогопоколения ПНВ второго поколения ПНВ третьего поколения
Чувствительность фотокатода 120-250 мА/люмен, 240 мА/лм  от 900 до 1600 мА/лм
Усиление света 120-900 раз от 25 000 до 50 000 до 100 000
Ресурс 40 часов от 1000 до 3000 час. 10 000 часов
Расстояние до крупного объекта 200-300 метров 400-600 метров 10 000 часов
Расстояние до мелкого объекта 150-250 метров 250-300 метров 350-500 метров
Защита от засветки есть есть есть
Помехозащищенность есть есть есть

ПНВ используется:

  • Для обнаружения движущихся объектов.
  • Для обнаружения неподвижных объектов, находящихся в засаде.
  • Оценки обстановки объекта.

Типовой ПНВ состоит из:

  • Оптической системы.
  • Усилители.
  • Подсистема построения изображения.
  • Тракт подсветки.

Картинку для глаз формирует выходная оптическая система. Поток в монокулярах поток разделяется на два зрачка. Армейские ПНВ задействуют монокуляры. Встречаются экземпляры с тепловизионными, ночными прицелами, создающими удобство при рекогносцировке.

История ПНВ и их классификация

Дата Событие
1935 год. Лаборатория В.И. Архангельского начала разработку ПНВ на основе ЭОП.
1936 год. Испытаны теплопеленгаторные станции БТП — 36
1937 год. ПНВ модель Ц — 1и Ц – 2 дальность 500 метров.
1937 – 1938 год. Создана система «Квант» установлена на БТ- 3
1939 – 1940 год. Установлена опытная партия ПНВ на танки БТ – 7 «Шип» и «Дудка».
1939 – 1940 год Создан автоматический теплопеленгатор АТП – 40.
1939 год. Установлено  9 береговых БТП – 36.
1943 год. Испытание ПНВ на танках Т – 34.
1944 год. ПНВ ИКН – 8 на танке Т – 34 – 85 прошел успешно испытания.
1943 год ППШ оснащают ИК с прицелом Ц – 3 для бойцов ШИСБр.
1943 год. В авиации для наведения самолетов ночью используется «Гамма —  ВЭИ»
1943 год. Корабли Черноморского флота оборудованы ИК.
1942 – 1944 год. Станция АТП-39 находилась на страже блокадного Ленинграда.
1944 год. Станция АТП-39 переведена в Тал

soldats.club

Обзор боевых систем ночного видения от западных производителей

Тепловизионное изображение американских солдат на задании

Что касается специальных систем ночного видения, то современный солдат никогда ранее не имел возможности выбора из такого широкого ассортимента. Несколько компаний в Северной Америке и Европе производят специальное оборудование для того, чтобы солдат мог наблюдать за своими общими или специфическими интересующими целями.

На рынке доступны комбинированные системы для круглосуточного наблюдения наряду с устройствами для подсветки цели. Для общего ночного наблюдения на рынке имеется гамма ручных тепловизионных моделей, не только обеспечивающих отличное ночное наблюдение, но также хорошую видимость сквозь пыль и дым поля боя.

Возможности ночного видения (НВ) современных боевых систем наблюдения являются необходимым инструментом для круглосуточного ведения боя. Кроме того, они являются средством, которое определит цель с высокой точностью, а затем сообщит о ней другим бойцам. Наряду со сложными оптико-электронными и инфракрасными (ОЭ/ИК) системами современные модели для наблюдения часто оснащаются коммуникационными интерфейсами, позволяющими передавать данные о цели и изображение в реальном времени в сеть командования и управления в более высокие эшелоны или соседним подразделениям. Эти интерфейсы позволяют передавать комплексную информацию о цели в чистом виде без помех в отличие от голосовых инструкций, для которых всегда есть риск быть не расслышанными из-за шума поля боя с потенциально катастрофическими последствиями.

Системы, описанные в этой статье, используют тепловидение для получения изображения окружающей местности.

В основном в тепловидении используются инфракрасные линзы, которые собирают фокусированное излучение, далее сканируемое ИК-детекторами, размещенными на фазированной решетке. Таким образом, термограмма создается решеткой примерно за 1/5 секунды. Блок выработки сигнала затем преобразует термограмму в электрические импульсы и передает эту информацию на дисплей, который представляет изображение зрителю в разных уровнях яркости в соответствии с ИК-излучением, который объект испускает в поле зрения.

Тепловизионные приборы, в общем и целом, разделены на неохлаждаемые системы, работающие при комнатной температуре, и охлаждаемые системы, в которых сенсор охлаждается примерно до 100 Кельвинов. Преимущество охлаждаемых систем состоит в том, что они обеспечивают гораздо лучшую четкость, потому что сенсор может определять мельчайшие изменения в температуре вплоть до 0,1 °C даже на расстоянии до 300 метров. Но охлаждаемые системы имеют недостаток в том, что они более хрупкие по сравнению со своими неохлаждаемыми аналогами. Кроме того, им также необходим либо газовый баллон, либо двигатель/насос Стирлинга для охлаждения сенсора. Первое решение оказывает значительную логистическую нагрузку, тогда как второе иногда может быть слишком шумным на определенном расстоянии и не подходит для скрытых задач.

Европа

Европа является родиной нескольких производителей боевых систем наблюдения, включая французскую компанию Sagem Defense Securite. Эта компания изготавливает модели JIM-LR и JIM-MR. Охлаждаемая система наблюдения JIM-LR при небольшой массе около 2,6 кг обладает чувствительностью 3-5 микрон; несмотря на охлаждающий насос, эта система работает очень тихо. Эта характеристика не раз демонстрировалась во время ночных учений, когда прибор JIM-LR был почти не слышен даже при работе в небольшой пустой комнате в ночной тиши. Вдобавок JIM-LR имеет три увеличения: x2, x4 и x8; и дистанции идентификации около 3,5 км для танка, а обнаружение таких машин возможно на дальности 9 км. Пользователь JIM-LR также получает преимущества от установленного приемника GPS, который обеспечивает точное местоположение сенсора и, следовательно, любой интересующей цели. Эта точность еще повышается за счет цифрового магнитного компаса.

Модель JIM-MR от Sagem для ближних дистанций имеет широкое поле зрения и двукратное увеличение в диапазоне 8-12 микрон. Это позволяет пользователю обнаруживать и определять танк на дистанции 3,5 и 1 км соответственно. Между тем точные координаты цели обеспечиваются лазерным дальномером и встроенным цифровым магнитным компасом.

В семействе ручных тепловизоров VARIOVIEW немецкой компании Jenoptik AG также используются неохлаждаемые тепловые формирователи изображения, следовательно, они совершенно бесшумные. Jenoptik изготавливает два основных варианта: VARIOVIEW 150 и VARIOVIEW 75. Первый имеет 150-мм ИК-линзы, второй 75-мм линзы, соответственно они предназначены для дальнего и ближнего наблюдения. В продуктовой линейке VARIOVIEW 150 компания Jenoptik предлагает базовую систему, которая может использоваться только как тепловизор и отдельную модель, в которую добавлен лазерный дальномер. Долгая работа от батареи и низкая стоимость обслуживания делают VARIOVIEW 150 «скромным» с логистической точки зрения. Что касается дистанций распознавания, то VARIOVIEW 150 может определять человеческую фигуру примерно с 5 км и машину на расстоянии до 8 км. VARIOVIEW 75 имеет сходные характеристики, хотя его дистанции определения составляют 2,5 км для человека и 5 км для машины. Кроме того, модели VARIOVIEW 150 и 75 могут подсоединяться к внешнему источнику питания и видеомониторам.

Что касается специальных систем наблюдения, то компания Jenoptik изготавливает дневную/ночную платформу для наблюдения NYXUS, которая может быть установлена на треногу, полезная опция для продолжительной работы. Долговременной работе также способствует 12-часовая работа от батарей. Для получения координат цели в NYXUS совмещены гироскоп и гониометр (прибор для измерения углов) наряду с цифровым компасом и GPS. Для наблюдения тепловизор совмещен с биноклем, тогда как безопасный для глаз лазерный дальномер класса 1M помогает точно определять координаты цели. Компания Jenoptik отмечает, что этот продукт идеален для подразделений артиллерийских наблюдателей наряду с передовыми авианаводчиками. С этой целью модель NYXUS поступила на вооружение немецкой армии еще в 2007 году.

Дополнительно к NYXUS компания Jenoptik поставляет ручной тепловизор NYXUS-LR в рамках немецкой программы по будущему пехотинцу IdZ-ES. NYXUS-LR облегчает круглосуточное наблюдение, а также обеспечивает хорошую проницаемость сквозь дым и пыль. Он обеспечивает дистанционное измерение и координаты цели наряду со своей собственной позицией посредством цифрового магнитного компаса и опциональной GPS. Также имеется ПЗС-камера (ПЗС – прибор с зарядовой связью, иначе полупроводниковая светочувствительная матрица) наряду с лазерным дальномером. Дальности определения для NYXUS-LR составляют около 5 км для машины и 4 км для ее идентификации (машины), лазерный дальномер также имеет сходные дальности. Добавление беспроводного интерфейса также позволяет модели NYXUS-LR передавать изображение другим пользователям.

JIM-LRSOPHIE MFSimrad VINGTAQS

К другим членам семейства NYXUS компании Jenoptik относятся приборы NYXUS MR и SR. Эти неохлаждаемые легкие тепловизоры, которые, как утверждают в компании, обеспечивают «возможности прежде недостижимые для носимого неохлаждаемого оборудования для дальних дистанций обнаружения людей и транспортных средств». Компания производит модели NYXUS-MR и NYXUS-SR для среднего и ближнего наблюдения.

Как демонстрирует продуктовая линейка Sagem, Франция является неким центром выпуска превосходных ночных систем наблюдения, а компания Thales также отвечает за выпуск ряда подобных систем. Компания изготавливает одну из самых известных серий изделий в этой сфере, а именно семейство SOPHIE. Модели SOPHIE имеют эргономический дизайн, бинокулярную конфигурацию и, как заявляют в компании Thales, это семейство представляет собой первую, ручную длинноволновую тепловизионную систему, способную работать независимо от любой внешней системы охлаждения. SOPHIE изначально изготавливалась в диапазоне 8-12 микрон, который стал стандартом в НАТО благодаря не только своей способности работать в самых разных условиях, но также хорошей проницаемости в дыму и пыли, свойственной этому диапазону.

Семейство SOPHIE включает охлаждаемую модель SOPHIE-MF, имеющую три поля зрения: узкое, широкое и увеличение x2. Thales утверждает, что тепловизор может работать в экстремальных условиях, при температурах -40°C - +55°C; полезная характеристика для солдат, использующих устройство в климате Афганистана. Имея дальность действия до 10 км, эта система для наблюдения также включает интерфейс RS-422, лазерный дальномер и лазерный указатель, магнитный компас, встроенную GPS и дневную цветную камеру. Одной из привлекательных характеристик SOPHIE-MF является то, что она может использоваться для обнаружения закамуфлированных целей.

К модели SOPHIE-MF присоединяется простой тепловизор SOPHIE. Как и его «брат» он может работать в схожих экстремальных условиях и определять закамуфлированные цели. SOPHIE также имеет три поля зрения; узкое, широкое и электронное увеличение; комплектная модель весит 2,4 кг. SOPHIE работает пять часов от батареи, но в отличие от SOPHIE-MF у нее нет лазерного указателя, дальномера и дневной цветной камеры.

Оба тепловизора SOPHIE и SOPHIE-MF работают в диапазоне 8-12 микрон. Впрочем, SOPHIE-ZS от Thales работает в диапазоне 3-5 микрон и имеет непрерывное оптическое увеличение x6, интерфейс RS-422 и весит 2,4 кг. Между тем SOPHIE-XF представляет собой тепловизионную систему определения местоположения цели третьего поколения. Как и SOPHIE-ZS, модель SOPHIE-XF имеет непрерывное увеличение x2.6-x16. Кроме того, заряда батареи хватает на 7 часов работы, а дальность действия лазерного дальномера составляет до 10 км.

Компания Thales работает под девизом «модульность» и поэтому также изготовила систему для наблюдения известную как Модульная Неохлаждаемая Инфракрасная Камера ELVIR, которая может использоваться как часть лазерной тепловизионной системы или как отдельный продукт. При дальности определения 1,5 км для человека и до 3,2 км для танка диапазон рабочих температур у ELVIR несколько меньше и составляет от -33° до +58°C. Между тем, ELVIR-MF, оснащенная GPS, цифровым магнитным компасом и линзой с увеличением x4,7, образует многофункциональный вариант в семействе ELVIR. Эта модель распознает машину на дальности 4,7 км и человека на 2,3 км.

Компания Thales имеет громадный опыт как в сфере оптоэлектроники, так и в нескольких других оборонных областях. Европейский континент, впрочем, также является родным для нескольких компаний, специализирующихся исключительно на подобных продуктах. Одна из таких компаний – бельгийская OIP Sensor Systems, которая изготавливает ряд тепловизионных систем наблюдения. Продуктовая линейка компании включает прибор AGILIS, работающий в диапазоне 3-5 микрон, он имеет встроенную GPS и компас, опциональный лазерный указатель и дальномер. В AGILIS применяется охлаждающая система Стирлинга закрытого типа, он работает при температурах от -30°C до +55°C. Те покупатели, которым необходимо дистанционно управляемое тепловизионное оборудование, могут выбрать систему дальней разведки и наблюдения LEXIS от OIP Sensor Systems, которая также включает дневную телекамеру и безопасный для глаз лазерный дальномер. LEXIS доступен как с охлаждаемым, так и неохлаждаемым сенсором в диапазоне 3-5 или 8-12 микрон.

Переносной тепловизионный прибор для наблюдения CLOVIS – еще одна позиция в каталоге OIP Sensor Systems. CLOVIS имеет дальность определения свыше 25 км и дальность идентификации 10 км для цели размером с самолет. Как и AGILIS, в CLOVIS установлен сенсор с разрешением 3-5 микрон с устройством Стирлинга закрытого типа.

Еще один европейский лидер по системам наблюдения – это норвежская компания Simrad Optronics. Модель FOI2000 этой компании является модульной и предназначена для оснащения передовых наблюдателей; она может быть дополнена цифровой камерой, лазерным указателем и/или GPS. Основу FOI2000 составляют устройство определения местоположения цели LP1OTL этой же компании и тепловизионная система FTI от FLIR Systems. Левая линза окуляра у LP1OTL показывает тепловое изображение пользователю, который «общается» с устройством при помощи программного меню на базе операционной системы Windows-CT . Кроме того, у LP1OTL есть функция увеличения. Гироскоп, ориентированный на север, и цифровой гониометр GONIOLIGHT от Vectronix выполняют функцию определения данных о цели. Также есть возможность подсоединить FOI2000 к сети, что позволит изображение и данные передавать другим пользователям.

Швейцарская компания Vectronix AG заняла свою нишу в качестве лидирующего поставщика продвинутого оборудования для наблюдения. В частности, ее гониометр GONIOLIGHT можно подсоединить к тактической сети, внешней GPS, гироскопу или внешнему источнику энергии. Vectronix изготавливает GONIOLIGHT в нескольких вариантах, которые могут быть дополнены бинокулярными дальномерами VECTOR, в то время как GONIOLIGHT TI дополнен тепловизионной камерой MATIS HH от Sagem. У модели GONIOLIGHT GTI эта тепловизионная камера может быть дополнена гироскопом. В качестве альтернативы линейка GONIOLIGHT может быть оборудована тепловизионными камерами и лазерными дальномерами, указанными покупателем.

Великобритания является домом для компании Qioptiq, которая изготавливает специализированные тепловизионные системы наблюдения для сухопутных войск. Эти продукты включают неохлаждаемый тепловизионный прицел для наблюдения VIPIR-S, имеющий увеличение x3. VIPIR-S может определять человека на дальности 400–600 метров и весит до 700 грамм. VIPIR-S работает в диапазоне 8-12 микрон и питается от 4 батарей AA. К линейке компании присоединяется ручной тепловизионный прибор для наблюдения VIPIR-2S. Последняя модель имеет увеличение до x2,7, электронный зум x2, в ней установлен неохлаждаемый сенсор. VIPIR-2S весит 950 грамм и подобно VIPIR-2 работает в диапазоне 8-12 микрон и питается от 4 батарей AA.

Британская компания Innovative Sensor Development Ltd также производит тепловизионные системы наряду с прицелами и электрооптикой для водителя. Изделия для наблюдения включают камеру детализированного видения DACIC (Detailed and Contextual Imaging Camera), она работает при температурах от -42°C до +45°C и весит вместе с футляром 6,5 кг.

SEESPOT-IIIGONIOLIGHT Tl

Бинокли от компании Vectronix

Покупатели, которым необходимы ручные бинокулярные дальномеры, могут выбрать семейство VECTOR от компании Vectronix. Эти модели завоевали необычайную популярность и были проданы в 17 стран только лишь входящих в НАТО, не говоря уже об остальных. Бинокли VECTOR имеют лазерный дальномер и увеличение x7, также встроенный цифровой магнитный компас; беспроводной интерфейс RS-232 позволяет пользователю легко передавать изображение своим коллегам по сети. Для того, чтобы повысить точность огня семейство биноклей VECTOR имеет цифровой калькулятор, позволяющий пользователю сравнить точку встречи с желаемой точкой прицеливания. Для длительных стационарных задач бинокли VECTOR могут устанавливаться на одиночную опору или треногу. В семействе VECTOR, модель VECTOR-IV создана для пехотных подразделений, а модель VECTOR-21 предназначена для применения в качестве специализированной системы передового обзора. Последняя модель имеет такие же тепловизионные характеристики, как и модель VECTOR-IV Nite.

Безопасный для глаз лазерный дальномер MOSKITO от Vectronix также имеет бинокулярную конструкцию и может измерять вертикальные и горизонтальные углы. MOSKITO имеет увеличение х3 для ночного времени и увеличение x5 для работы днем, а измерение дальности выполняет на дальностях до 4 км. Наряду с этими характеристиками еще один полезный атрибут модели MOSKITO – это функция усиления яркости с автостробированием. Она адаптирует изображение в зависимости от световых условий. Это особенно важно в городских условиях, когда световые условия быстро меняются. Стоит только подумать о том, когда покидаешь темную комнату и выходишь на яркий солнечный свет и наоборот, то понимаешь, какое влияние это оказывает на любое зрение. Хотя MOSKITO имеет встроенный приемник GPS, но при необходимости его можно также подсоединять к внешней системе GPS. В дополнение к семейству VECTOR и модели MOSKITO компания Vectronix также изготавливает ночной бинокль BIG35 Night Binoculars для обычных операций передового наблюдения.

Израиль

Системы ночного видения всех типов и поколений стоят на вооружении израильской армии, за последние 25 лет они сыграли свою важную роль во всех военных операциях. В результате израильская оборонная промышленность в настоящее время является поставщиком продвинутых систем, варьирующихся от солдатских очков до систем наблюдения на дальние дистанции совмещенных с другими сенсорами.

CORAL-CR разработан компанией Elbit Systems Electrooptics El-Op предназначен для наблюдения на средних дистанциях; его испытания проводились в боевых подразделениях израильской армии. По данным компании, способен отмечать и запоминать 12-разрядные координаты и передавать их обратно. CORAL-CR – легкая тепловизионная система наблюдения с дальностью несколько километров, предназначена для пехоты и разведывательных подразделений. Портативный прибор CORAL-CR предназначен для простых операций.

В 2008 году компания El-Op была выбрана на поставку своих систем MARS для израильской армии. В этой ручной тепловизионной системе обнаружения целей используется технология неохлаждаемого сенсора. В системе имеются лазерный дальномер, GPS, компас, дневной канал и система записи.

В настоящее время компанией разработана система HELIOS, которая рекламируется как «Роллс-Ройс среди тепловизоров». HELIOS устанавливается на треноге и имеет систему, сочетающую охлаждаемый тепловой сенсор, цветную и панхроматическую камеры, лазерный дальномер, GPS и компас. Компания также производит системы сбора видеоданных, которые будут собирать данные от разных сенсоров в единое изображение.

Целевой клиентурой для компании ITL в основном являются сухопутные подразделения, например пехота, снайперы, разведка и специальные силы. Переносные, прочные, с низким энергопотреблением современные пехотные системы позволяют эффективно работать в суровых боевых условиях, не накладывая физическую и психологическую нагрузку на солдата. Эти системы варьируются от индивидуальных модульных моделей до целых боевых комплексов, оптимизированных для высокоточных операций.

ITL недавно запустила в производство семейство очень легких высокоэффективных неохлаждаемых тепловизионных ручных моделей, прицелов для вооружения и систем наблюдения под обозначением COYOTE. В COYOTE применяются основные общие компоненты, базирующиеся на уникальном энергосберегающем сенсоре, который компонуется с различными линзами и адаптируется к требованиям заказчика.

Оптика COYOTE адаптирована для пехоты или гражданского патрулирования. Это было достигнуто за счет добавления широкого поля зрения, настраиваемой вручную фокусировки, адаптера для оружия, крепления для треноги, лазерного указателя и кабеля для дистанционного управления в соответствии с оперативной потребностью. Устройство доступно с разными фокальными расстояниями (20 мм, 45 мм), а также с устанавливаемыми пользователем дополнительными умножителями и увеличителями.

ITL также разрабатывает линейку охлаждаемых тепловизионных систем. Одна из этих систем HARRIER недавно была выбрана индийской армией.

Хорошим примером способности компании ITL компоновать различные возможности в одну бинокулярную систему является легкая, мультисенсорная, бинокулярная система круглосуточного наблюдения и обнаружения целей EXPLORER. Это упрочненная система «все в одном» совмещает тепловизор 3-го поколения с безопасным для глаз лазерным дальномером с дальностью до 15 км, дневную камеру высокого разрешения, встроенный лазерный дальномер, встроенную GPS (Code C/A (код грубого определения местоположения объектов), 12 каналов), цифровой компас (градусы или мили, среднеквадратичная точность 1°) и уклономер (±60°). Система имеет непрерывное увеличение или три поля зрения. EXPLORER может быть ручным, устанавливаться на треноге или на панорамной головке, управляться дистанционно исходя из оперативных потребностей. В ITL говорят, что EXPLORER обеспечивает превосходные высокоэффективные возможности наблюдения, обнаружения, идентификации и сопровождения целей.

CORAL-LS плюс LDRITL EXPLORER

Компания Controp недавно выпустила новую тепловизионную камеру FOX 1400 мм. Эта новая модель присоединилась к семейству широко известных и распространенных в мире тепловизоров FOX. Новая камера FOX имеет линзу 1400 мм с непрерывным увеличением x35. Она обеспечивает наблюдение и сопровождение целей на «сверхдальних» дистанциях. FOX 1400 мм уже была поставлена нескольким покупателям как часть системы дальнего наблюдения для береговой защиты и наблюдения. Семейство тепловизоров, в которое входят FOX 250, FOX 450, FOX 720, имеет характеристики, которые как говорят в компании, отличают их от других тепловизионных камер.

Непрерывное увеличение FOX обеспечивает плавный переход между полями зрения для наблюдения, сопровождения цели и затем ее идентификации крупным планом. Вдобавок, улучшенные алгоритмы обработки изображения создают картинку высокого качества, даже если на изображении есть тепловое пятно (взрыв, огонь и т.д.). Локальная автоматическая регулировка усиления обеспечивает четкое изображение мелких деталей на изображении несмотря на чрезвычайную разницу на картинке в наблюдаемой зоне и теневых зонах. Камеры FOX доступны в трех разных увеличениях: x12,5, x22,5 и x36. Это позволяет гибко конфигурировать их для любых дневных и ночных требований, будь то наземные программы национальной безопасности, воздушного наблюдения и разведки или морских приложений. Кроме того, камеры FOX при необходимости могут подсоединяться к большинству существующих радарных систем, системам оповещения или другим системам C4ISR (командование, управление, связь, компьютеры, разведка, наблюдение и рекогносцировка) для обеспечения максимальной безопасности. Эта камера небольших размеров имеет небольшую массу и доступна с чехлом или без него так, что она может быть включена в состав имеющейся аппаратуры или использоваться как одиночная система.

Функция локальной автоматической регулировки усиления разработки компании Controp

США

Американская компания FLIR Systems работала с Simrad (см. выше) над оборудованием боевого наблюдения и, кроме того, производит линейку своих собственных устройств. Система RANGER-HRC этой компании состоит из охлаждаемого тепловизора с увеличением x12,5, работающего в диапазоне 3-5 микрон. Между тем, цветная телекамера имеет три поля зрения: стандартное, дальней дистанции и сверхдальней дистанции. Кроме того, покупатели могут выбрать лазерный дальномер с дальностью до 20 км. Модель RANGER-II/III имеет два поля зрения.

В отличие от семейства RANGER тепловизор THERMOVISION 2000/3000 от FLIR Systems имеет три поля зрения и инфракрасный фотодетектор на квантовых ямах (QWIP) 320x240 в случае с THERMOVISION 2000, и QWIP 640x480 для модели THERMOVISION 3000. Линейка моделей для наблюдения компании FLIR действительно большая, еще есть THERMOVISION Sentry II с непрерывным увеличением x12 и дневной телекамерой.

Для общего наблюдения FLIR Systems изготавливает несколько тепловизионных биноклей, например MILCAM RECON III Lite (также известный как AN/PAS-26 в американских ВС) который включает микроболометр 640x480 VOx, лазерный указатель и цветной канал. MILCAM RECON III работает в диапазоне 8-12 микрон. При массе 2,5 кг, эти бинокли могут быть ручными или устанавливаться на треногу. К MILCAM RECON III присоединяется модель LOCALIR, в которую добавлены лазерный дальномер и цифровой компас с точностью до 0,3 мил плюс GPS и опциональный лазерный указатель. LOCALIR работает в диапазоне 3-5 и 8-12 микрон и имеет небольшую массу менее 3 кг.

MILCAM RECON III OBSERVER также продвигается под обозначением AN/PAS-24, он имеет схожие характеристики с предыдущей моделью и опциональный лазерный указатель. FLIR Systems создала эту модель для высокомобильных задач наблюдения; пользователи, которым необходима чрезвычайно малая масса имеют возможность выбрать MILCAM RECON III ULTRALITE от FLIR System. Устройство имеет цифровой зум x2 и x4 плюс микроболометр 640x480 Vox, масса его менее 1,7 кг, работает в диапазоне 8–12 микрон, время работы от батареи составляет четыре часа.

Как и многие модели, рассмотренные в этой статье, портативный тепловизор RECON от FLIR Systems имеет небольшую массу и работает в диапазоне 3–5 микрон на дальних дистанциях. Он может быть использован для наблюдения за границей, задач национальной безопасности, разведки и наблюдения. RECON может обнаружить транспортные средства на расстоянии 1 км. Все сенсорные приборы установлены в корпус массой 3,2 кг, включая батарею со временем работы около 2,5 часов. Еще одна полезная характеристика камеры RECON – она может использоваться в ручном режиме или подсоединяться к компьютеру для операций удаленного управления. Кроме того, для покупателей которым необходима модель, работающая в диапазонах 1,06, 4,5 и 4,8 микрон, FLIR Systems изготавливает ручной тепловизор SEASPOT-III массой 2,4 кг.

Тепловизионные системы наблюдения также являются специализацией американской компании DRS Technologies. В частности, компания изготавливает ручное устройство под обозначением MX-2 A1110 Rugged Thermal Imager (упрочненный тепловизор). DRS Technologies разработала эту модель в качестве универсальной системы, которая может использоваться для разведки и наблюдения за полем боя, работает она в диапазоне 8–12 микрон, оснащена съемным окуляром для дистанционной работы. Работает тепловизор от 4 батареек AA, прорезиненное и не отражающее покрытие гарантируют, что он имеет повышенную прочность при одновременном снижении заметности.

Компания Nivisys производит линейку оптических приборов для военных и правоохранительных органов, включая прицелы для оружия и очки ночного видения. Поскольку здесь рассматриваются боевые тепловизоры, стоит упомянуть монокуляр этой компании TAM-14 Thermal Acquisition Monocular. Это универсальное устройство может использоваться в ручном режиме, крепится оно на шлем или оружие. TAM-14 имеет зум x2, массу всего 640 грамм, конструкция построена на неохлаждаемом сенсоре с диапазоном 7–14 микрон. Другие продукты компании Nivisys включают тепловизионный бинокль PHX-7, работающий в той же полосе спектра как TAM-14. Также в нем применена технология неохлаждаемого сенсора, как и в модели UTAM-32 Universal Thermal Acquisition Monocular (универсальный тепловизионный монокуляр обнаружения), который как говорят в компании «представляет собой самое последнее достижение в нашей серии ручных тепловизоров». Как и TAM-14, UTAM-32 может работать в разных конфигурациях: ручной, устанавливаться на оружие или крепиться к шлему.

American Technologies Network, Corp. (ATN) выпускает широкую линейку тепловизоров, универсальные системы OTIS-14 и OTIS-17, серию прицелов вооружения THOR и RENEGADE и серию ручных устройств THERMAL EYE. Серия систем слияния изображения FIITS сочетает тепловизионную камеру и устройство усиления яркости.

ITT Night Vision & Imaging - хорошо известный поставщик усилителей яркости изображения для ночных условий для многих союзных и дружественных стран. Новейшая модель компании DSNVG объявлена первыми очками ночного видения, в которых в компактном блоке совмещены усиление яркости изображения и наложение тепловизионных изображений.

ATN NIGHT SHADOWIZLID-1000

Канада

За 49-ой параллелью канадская компания General Starlight Company производит ряд универсальных тепловизионных систем для наблюдения за полем боя. Они включают универсальный монокуляр TIM-14 Thermal Imaging Multipurpose Monocular, имеющий цифровое увеличение x2 и несколько дальностей обнаружения в зависимости от размера линзы, установленной в модели. Для 22-мм линзы человек может быть определен на дистанции 475 метров и машина на 800 метров, соответственно для 16-мм линзы дальности составляют 305 метров и 550 метров, для 8,5-мм линзы дальности 170 метров и 300 метров. Неохлаждаемый TIM-14 может без перерыва работать до 4 часов, опционально может крепиться к шлему или оружию. Монокуляр TIM-14 присоединяется к TIM-28, который работает в диапазоне 8-12 микрон и способен определить человека на расстоянии 1 км и машину на 1,5 км. TIM-28 может работать до 6 часов подряд, а масса его всего 800 грамм.

Канада также родина компании Newcon Optik, которая предлагает линейку устройств ночного видения, лазерные дальномеры, устройства стабилизации изображения и его усиления. Особый интерес для этой статьи представляет тепловизионные системы TVS-7B и SENTINEL. Первая модель представляет собой очки, способные определить человека на 475 метров и автомобиль на 900 метров при использовании неохлаждаемого сенсора. Всего с одним комплектом батарей TVS-7B может работать до 5 часов, масса ее составляет 450 грамм. Между тем, тепловизионный бинокль SENTINEL от Newcon Optik имеет очень большие дальности обнаружения, человек до 1 км у модели с 57-мм линзой и 2,5 км с 115-мм линзой. Дальности обнаружения и идентификации для цели размером с танк составляют 3000 метров и 6000 метров для 57-мм линзы и 4000 метров и 8000 метров для 115-мм линзы. Оба варианта SENTINEL могут работать до 8 часов без перерыва при температурах от -30°C до +55°C.

Компания ITT и ночное видение

В сфере тепловидения ITT Corporation является одним из мировых лидеров среди разработчиков, производителей и поставщиков нашлемных и наголовных решений в сфере тепловидения базирующихся на другой технологии, чем это описано в основной статье, а именно усиление яркости изображения. Ее системы широко применяются американскими и союзными войсками, а также силами национальной безопасности.

Компания получила контракт стоимостью 19,3 миллиона долларов от Научно-исследовательского центра разведки и наблюдения на поставку монокулярных устройств AN/PVS-14 – самого популярных и используемых очков ночного видения. 80% этих очков предназначены для экспедиционных сил, оставшееся количество для флота и армии. «Мы рады поддержать все рода войск США нашими главными очками для ночного видения, – сказал президент подразделения по ночному видению компании ITT Майк Хэйман. – Этот контракт позволил ITT продолжить развитие лучшей технологии с целью помочь американскому солдату владеть ночью».

AN/PVS-14 - легкий и надежный тепловизионный монокуляр с высокими характеристиками, обеспечивающий улучшенное разрешение для улучшения мобильности и идентификации целей. Эти прочные устройства могут быть ручными, крепиться к шлему или камере, а также к оружию. AN/PVS-14 работает от одной батарейки AA, в нем применяется патентованный компанией ITT пленочный усилитель яркости изображения PINNACLE Generation 3. Трубка Gen 3 PINNACLE может собирать и усиливать имеющийся световой поток в более чем 10 раз по сравнению с предыдущим поколением.

Вывод

Опыт передовых наблюдателей в современных войнах окажет основное влияние на конструктивные критерии изделий для передового наблюдения, используемых в завтрашних конфликтах. Войны в Ираке и Афганистане были весьма поучительны показав, что передовые наблюдатели, работающие на земле, требуют все большие дальности обнаружения и идентификации целей. Это сочетается с желанием того, чтобы системы следующего поколения имели еще более впечатляющую четкость изображения и улучшенные средства распределения изображения среди других пользователей. Необходимы все более совершенные системы и компании производящие эти устройства, вынуждены будут решать серьезную задачу – создание моделей с повышенными возможностями при сохранении массы устройств, а то и ее уменьшении.

Использованы материалы:www.monch.comwww.sagem.comwww.jenoptik.comwww.thalesgroup.comwww.vectronix.comwww.elbitsystems.comwww.itlasers.co.ilwww.flir.comwww.exelisinc.comwww.controp.comwww.nvoptics.comwww.itt.com

topwar.ru

больше продвинутых прицелов для продвинутых солдат » Военное обозрение

Когда-то ограниченные армиями первого порядка, системы ночного видения теперь стали распространенным инструментом многих наземных сил. Как всегда, западная промышленность и военные пытаются улучшить возможности этих систем с целью сохранения превосходства над возможными оппонентами. При этом приходится сталкиваться с множеством проблем и одна из основных, конечно же, массогабаритные и энергопоглощающие характеристики.

Появление неохлаждаемых тепловизионных сенсоров позволило внедрить эту технологию в ручные системы и винтовочные прицелы, Процесс миниатюризации продолжается, разрабатываются сенсоры меньших размеров, хотя скоро размеры оптики достигнут своих физических пределов. Что касается увеличения яркости изображения, то в этой сфере были разработаны новые трубки с повышенными возможностями, позволившие взглянуть дальше в темноту; в тоже время повысилось качество и тепловизионных устройств. Многочисленные производители в настоящее время берут сильные стороны этих двух технологий и совмещают их в комбинированных системах, дающих пользователям смешанное изображение, на котором тепловой сенсор позволяет увидеть невидимые невооруженному глазу скрытые горячие пятна, тогда как усилитель яркости дает общее изображение. Встраивание информации в системы технического зрения, либо днем, либо ночью, является еще одним шагом вперед на пути к тому, что известно под термином «дополненная реальность». На данный момент это справедливо для пешего солдата, но некоторые технологии активно «мигрируют» в бронированные машины, несколько европейских компаний в настоящее время рассматривают возможность оборудования рабочего места водителя полностью виртуальным зрением (не забудем и израильский перспективный танк «Кармель»). Подобные решения могли бы значительно повысить качество вождения в ночное время, а использование дополненной реальности повысило бы уровни безопасности и владения обстановкой. Соответственно, такие технологи, как например, тепловидение, становятся нечто большим, чем просто усовершенствования ночного зрения. Посмотрим, что происходит в сфере слияния технологий на примере европейских компаний.

Компании Benin и Photonis объединили усилия по разработке комбинированной системы на основе дневной цветной КМОП-камеры и неохлаждаемого микроболометраКомбинированный прицел FUZIR-V компании Pyser-SGI

На выставке DSEI 2015 компания Pyser-SGI представила два варианта своей системы FUZIR: FUZIR-V (visible - видимый) и FUZIR-I (intensification - усиление). Оба прибора базируются на одном термочувствительном элементе, представляющем собой микроболометр формата 384x288 из аморфного кремния, работающий в диапазоне 7-14 мкм, но вторые каналы у них разные. FUZIR-v – это отдельный прицел, он имеет также дневной канал на основе дневной телекамеры для низкой освещенности, изображение с обоих каналов выводится на монохромный дисплей размером 852x600 пикселей с диагональным полем зрения 19,2°. Оператор может выбирать свое предпочтительное визирное перекрестье при 0,5 «тысячной» за деление фиксатора горизонтальной регулировки и вертикальной поправки. Ручки настроек позволяют увеличить или уменьшить тепловой ввод и переключить полярность; тепловизионный канал также имеет цифровое увеличение х2. В крепимой системе FUZIR-i с полноценным совмещением изображений дневной канал обеспечивается телескопической оптической трубкой, которая также имеет визирное перекрестье; второй канал обеспечивает трубка усиления яркости (электронно-оптический преобразователь), например XD-4 Gen 3 или XR5. Высота и ширина у обоих устройств одинаковые, 108 и 62,5 мм соответственно; но FUZIR-i длиннее и тяжелее, 272 мм и 1527 грамм, против 209 мм и 1225 грамм у FUZIR-v. Оба прибора питаются от семи литиевых аккумуляторов АА, обеспечивающих 4 часа непрерывной работы. Водонепроницаемость обеспечивается в течение часа при погружении на глубину 20 метров. Обе системы имеют многоштырьковый разъем для передачи и записи видеопотока.

Вверху: модель корпуса в окончательном варианте, напечатанная на 3Д принтере; внизу: опытный образец крепимого прицела SWIR-диапазона, разработанный компанией AIM Infrarot-ModuleНа фото изображение с крепимого SWIR-прицела компании AIM. Его отличительные особенности - высокое разрешение и способность видеть сквозь стекло (объекты на заднем плане находятся в витрине)

Компания Qioptiq была среди первых европейских компаний, разработавших крепимые комбинированные прицелы. Ее собственный прибор, получивший имя Saker, в последней конфигурации был показан на выставке DSEI 2015. Saker в настоящее время находится в производстве, но комментариев по заказчикам компания не дает, хотя вся система не подпадает под Правила международной торговли оружием. Qioptiq стремится и дальше совершенствовать свои системы, на очередной выставке DSEI 2017 она представила свои новые разработки; выпуск ряда новых изделий намечен на 2018-2020 годы. Новый прицел с увеличением х1 и полем зрения 8° базируется на неохлаждаемом детекторе формата 320x240 с пикселем 17 мкм и на 18-мм усилителе яркости изображения Photonis Intens; изображение выводится на цветной OLED-дисплей 800x600. Дистанции обнаружения, распознавания, и идентификации человека составляют соответственно 1460, 540 и 260 метров в режиме усиления яркости и 1350, 460 и 210 метров в тепловизионном режиме. Впрочем, Saker интересен тем, что он позволяет работать в смешанном режиме с совмещением изображений с обоих каналов. Было разработано устройство дистанционного управления, воспроизводящее всю функциональность Saker, которое может устанавливаться на винтовку. Питание от трех батареек АА обеспечивает непрерывную работу в течение 6,5 часов в смешанном режиме и в течение 40 часов в режиме усиления яркости. Устройство Saker весит 890 грамм, включая планку Пикатинни, батарейки, крышку объектива и легкую маскировочную накидку.

Прицел Saker компании Qioptiq устанавливается на штурмовую винтовку и соединяется с дневным прицелом TrijiconИзображение с прицела Qioptiq Saker; этот комбинированный крепимый прицел был представлен британской компанией на выставке DSEI 2015 и в настоящее время серийно выпускается

Французская компания Bertin, часть CNIM group, представила в прошлом году свое цифровое устройство для наблюдения FusionSight, которое было разработано в соответствии с соглашением с Photonis, европейским лидером в сфере электронно-оптических преобразователей и КМОП-сенсоров для низкой освещенности. Вторая технология была выбрана в связи с тем, что, по мнению двух компаний, он лучше подходит для обработки изображений перед совмещением. Выбранный сенсор Kameleon базируется на КМОП-матрице формата 1280x1024, способной генерировать цветное изображение в условиях освещенности менее 10 миллилюкс. Что касается тепловизионного канала, то он базируется на неохлаждаемом сенсоре формата 640x480 с пикселем 17 мкм, работающем в диапазоне 8-12 мкм. Алгоритм интеллектуального слияния сигналов был разработан компанией Bertin в сотрудничестве с французским Управлением оборонных закупок DGA. Он позволяет оптимизировать процентное соотношение дневного/теплового каналов в зависимости от объекта и, тем самым, минимизировать маскирующий эффект камуфляжа оппонента. Объединенное изображение выводится на цветной OLED-дисплей размером 1280x1024. Ночное широкое поле зрения составляет 32° и узкое - 8°, соответственно широкое поле зрения дневного канала - 29° и узкое - 7,25°. Для типичной мишени размером 2,3x2,3 метра, изображающей транспортное средство, дистанции обнаружения составляют 2950 метров днем и 1480 метров ночью, дистанции распознавания 990 и 490 метров и идентификации 490 и 245 метров соответственно. Что касается ростовой мишени размерами 0,5x1,75 метра, представляющей человека, то эти цифры следующие: 1600 и 800 метров, 540 и 270 метров, 270 и 135 метров.

Совмещение каналов в системе FusionSight; справа комбинированное изображение

Система FusionSight включает цифровой компас, девятиосный блок инерциальных измерений и GPS. Питание осуществляется от литий-полимерного аккумулятора, позволяющего непрерывно работать до 7 часов. При использовании адаптера аккумулятор может быть заменен батарейками CR123 или АА. Без аккумулятора прибор весит 990 грамм. Система позволяет записывать снимки и видео, она также оборудована беспроводной системой связи и выходом HD-видео 25 кадров/с. Во второй половине 2016 года были проведены войсковые испытания системы в нескольких подразделениях французской армии. По их итогам было внесено несколько исправлений в программное обеспечение, в том числе и те, что направлены на улучшение человеко-машинного интерфейса. В компании Berlin назвали среди заказчиков французский флот и канадский департамент обороны, которые уже получили свои системы. Производство приборов продолжается, а в компании заявляют, что могут поставить их странам Евросоюза и НАТО в течение месяца и остальным заказчикам в течение трех месяцев.

На фото прицел FusionSight с двумя каналами; эта система была представлена компаниями Benin и Photonis на выставке Eurosatory 2016

Одним из последних изделий в сфере комбинированных систем является прибор Van Cat, показанный компанией Aselsan на выставке IDEF в Стамбуле в мае 2017 года. Он доступен в вариантах прицела и ручной камеры наблюдения. Поля зрения у этих приборов разные, тогда как сенсоры одинаковые: неохлаждаемый болометр формата 640x480 с пикселем 17 мкм и трубка усиления яркости (электронно-оптический преобразователь) поколения Gen 2+/Gen 3. Прицел Van Cat имеет на обоих каналах диагональное поле зрения 12,9° с увеличением х2 и электронным увеличением х2 и х4; изображение выводится на цветной OLED-дисплей размером 800x600, на котором также выводится перекрестье BDC (Bullet Drop Compensator - с компенсацией понижения траектории пули). Van Cat имеет функцию автоматической оптимизации изображения, оператор также способен переключать полярность теплового изображения с режима black-hot (режим отображения тепловой картины с индикацией горячих объектов чёрным цветом и холодных объектов белым цветом) в режим white-hot и обратно.

Новый комбинированный прицел Van Cat от компании Aselsan; также доступен ручной вариант для наблюдения с увеличением х1

Имеется входной разъем видео формата PAL, а также интерфейсы RS232 и Ethernet, также имеется функция захвата изображений и видео. Прицел может использоваться с наголовным дисплеем, связь между устройствами осуществляется по беспроводному каналу. Стандартная система имеет алюминиевый корпус и весит 1,1 кг с батареями, которые обеспечивают непрерывную работу до трех часов. Впрочем, чтобы сэкономить порядка 100 грамм, компания Aselsan может предоставить прицел в композитном корпусе. Что касается ручного варианта, то его более короткая оптика дает более широкое поле зрения 30,5° с увеличением х1. Стандартный вариант системы весит 750 грамм, также эта модель меньше по размерам, 90x80x180 мм против 225x135x100 мм у прицела VanCat. Эта система стала первым комбинированным оптронным устройством, разработанным компанией Aselsan, которая, тем не менее, получила за нее награду турецкого научного сообщества. В компании Aselsan планируют завершить квалификационный процесс и начать серийное производство системы в конце 2017 года.

Вариант прицела Van Cat от Aselsan показанный на выставке IDEF 2017; прицел имеет оптическое увеличение х2, к которому может быть добавлено электронное увеличение х2 или х4

На форуме «Будущих вооруженных сил» в Праге в октябре 2016 года британская компания Thermoteknix представила прототип своего монокуляра ночного видения FuseIR с новейшим неохлаждаемым тепловым сенсором MicroCAM 3 своей же разработки формата 384x288 с пикселем 17 мкм. Имея диаметр 36 мм и вес 30 грамм, он обеспечивает поле зрения 31° и отличается патентованной компанией Thermoteknix беззавторной технологией XTi Technology. Она позволяет получать непрерываемый обзор, кроме того, отсутствие движущихся частей повышает надежность и снижает энергопотребление. Канал усиления базируется на усилителе яркости изображения Photonis диаметром 16 мм с высокими характеристиками, имеющим поле зрения 40°. Прибор работает в четырех режимах: усиление яркости, тепловизионный, полностью совмещенный и повышение контраста. Дистанции обнаружения, распознавания и идентификации в тепловизионном режиме составляют соответственно 1075, 269 и 135 метров для мишени типа танк и 470, 115 и 60 метров для ростовой мишени. Размеры прибора FuseIR составляют 72,5x141,5x78,5 мм, вес 430 грамм с двумя батарейками АА, которые гарантируют шесть часов непрерывной работы. Система, не подпадающая под Правила международной торговли оружием, выпускается в ручной или нашлемной конфигурациях. В июне 2017 года Thermoteknix объявила о том, что FuseIR полностью готов к производству и первые поставки ожидаются в конце 2017 года. Позднее прибор был представлен на недавно прошедшей в Лондоне выставке DSEI. Стоит отметить, что компания Thermoteknix одной из первых разработала крепимый ИК-модуль ClipIR, весящий всего 150 грамм, который крепится впереди очков ночного видения или прицелов.

На фото сравнительные размеры монокуляра FuseIR разработки британской компании Thermoteknix; его вес составляет 430 грамм с батареямиКомпания Thermoteknix разработала монокуляр FuseIR, позволяющий использовать преимущества комбинированных систем даже в конфигурации очков ночного видения

В 2014 году французская компания Thales представила свой комбинированный монокуляр ночного видения Minie-D/IR. Прибор весом 500 грамм, включая одну батарейку АА, выводит изображение на цветной SVGA-дисплей размером 800x600 в режимах «Полностью инфракрасный», «С заданной чувствительностью» или «Выделение контуров». Изображение генерируется двумя сенсорами: усилителем яркости поколения Gen II или Gen III и неохлаждаемым тепловизионным датчиком 336x256, работающим в диапазоне 7,5-13,5 мкм. Последний идет в виде модуля, который легко можно установить на стандартный прибор Minie-D. Было принято решение использовать цветной дисплей с тем, чтобы более точно интерпретировать комбинированное изображение. При работе в режиме усиления яркости батарей хватает на 40 часов работы, но в смешанном режиме это время сокращается до 2,5 часов. Доступен блок с пятью батарейками, что позволяет увеличить эти цифры до 150 и 18 часов соответственно. В настоящее время компания Thales разрабатывает Bonie-D/IR - комбинированный вариант своего ночного бинокуляра, представленного пару лет назад. Эта система может стать стандартным прибором ночного видения французской армии в рамках программы FELIN 2.0, которая в свою очередь входит в проект глобальной трансформации вооруженных сил Scorpion.

Компания Thales разработала ИК-модуль (вверху) специально для своего монокуляра Minie-D. На фото видно место подсоединения двух систем

Компания AIM Infrarot-Module расширяет характеристики своих устройств

В то время как большинство тепловизионных систем работают в средней (средневолновой) ИК-области спектра (MWIR) и в ближней (длинноволновой) ИК-области спектра (LWIR), соответственно 3-5 и 8-14 мкм, немецкая компания AIM Infrarot-Module разрабатывает крепимый прицел, работающий в диапазоне E-SWIR (Extended - Short Wave Infrared - расширенная, дальняя (коротковолновая) ИК-область спектра). Диапазон SWIR составляет от 0,9 до 1,7 мкм, однако, AIM разработала охлаждаемый датчик на ртутно-кадмиевом теллуриде, который обладает повышенной чувствительностью от 0,9 до 2,5 мкм без снижения характеристик. Это позволяет получить разрешение изображения близкое к разрешению трубки усиления яркости и повысить достоверность идентификации. Помимо того, что технология E-SWIR позволяет получить разрешение, существенно превышающее разрешение стандартных тепловизионных систем, она также дает еще одно громадное преимущество - способность видеть, что происходит за стеклянной поверхностью. Кроме того, система с такой технологией может видеть вблизи инфракрасных указателей, 1,06-мкм лазерных целеуказателей и 1,55-мкм лазерных дальномеров. На форуме в Праге был представлен опытный образец этой системы, все ее элементы были заключены в корпус прицельного комплекса Huntir Mk.2 этой же компании. Модель же корпуса в окончательном варианте была напечатана на 3Д принтере. Компания AIM планирует представить полноценную систему на выставке Milipol 2017, которая пройдет в ноябре в Париже. Окончательный вес системы вместе с батареями составит менее одного килограмма.

Крепимый тепловизор COTI американской компании Optics 1

Новый прибор диапазона SWIR из Штатов

Компания Optics 1, американское подразделение Vectronix, являющейся частью Safran Electronics & Defense (Safran group), имеет в своем каталоге три крепимых устройства, которые могут использоваться с приборами ночного видения. Оригинальное устройство COTI (Clip-On Thermal Imager - крепимый тепловизор) предназначено для крепления к ПВН, его микродисплей располагается впереди оптики очков, а изображение фокусируется в бесконечность. В нем используется неохлаждаемый микроболометр с матрицей формата 320x240, работающий в диапазоне 8-12 мкм. Вес с батарейкой CR123A, обеспечивающей 3 часа работы, составляет 150 грамм. Последним дополнением к каталогу Optics 1 является прибор E-COSI (Enhanced Clip-On SWIR Imager - улучшенный крепимый тепловизор дальней области спектра), который конструктивно схож с моделью COTI но его сенсор заменен датчиком SWIR, работающим в диапазоне 0,9-1,7 мкм. Благодаря этому E-COSI может использоваться для засечки лазерных указателей и целеуказателей во время дневных и ночных операций. Кроме того, был разработан вариант E-COSI See-Spot; он отличается увеличением х2 и может обнаруживать цели на дистанции до 2000 метров.

По материалам сайтов:www.spie.orgwww.bertin-instruments.comwww.photonis.comwww.aim-ir.comwww.qioptiq.comwww.aselsan.com.trwww.thermoteknix.comwww.thalesgroup.comwww.optics1.comwww.pyseroptics.comwww.vashtehnik.ruwww.wikipedia.orgwww.laser-portal.ru

topwar.ru

Инфракрасные прицелы вермахта » Военное обозрение

В 1936 году немецкое руководство приказало компании AEG разработать инфракрасный прибор ночного видения, и уже в 39-м году был готов первый действующий прототип, который работал параллельно с 37-миллиметровым противотанковым орудием Pak 35/36 L/45. Осенью 42-го года конструкторы компании разработали прибор, использующийся с 75-миллиметровым противотанковым орудием PaK 40 L/46 и установленный на самоходную установку Sd.Kfz.131 (Marder II). В середине 43-го года начаты испытания прибора ночного видения (Nacht Jager) и телескопического дальномера, установленных на Panther.

Было разработано и в дальнейшем использовано два варианта установки приборов на танки Panther.

Вариант (А) - Sperber состоял из конвертера изображения и 300 мм поискового инфракрасного фонаря, которые управлялись командиром экипажа (обозначался FG 1250). С конца 44-го по март 45-го года несколько Panther Ausf G а также других типов с установленными FG 1250 были успешно испытаны.

В марте-апреле 1945 года около 50 Panther Ausf G, а также других моделей танков, учувствовали в боях на Западном и Восточном фронтах. Ночной прицел серийно устанавливался на командирскую башенку поздних образцов «Пантера»; для подсветки цели применяли полугусеничные бронетранспортеры Sd.Kfz. 251/20 «Valke» (Infrascheinwerfer), которые оборудовались 600-миллиметровым зенитным прожектором, установленном на поворотной установке, и снабженным инфракрасным фильтром (данная система получила название «UHU» — «Филин»). Экипаж бронетранспортера оборудованного таким образом состоял из 4 человек. Данный вариант прибора мог устанавливаться на любых бронемашинах.

Вариант (В) – более сложная комплектация получившая названием Biwa, состояла из 3 комплектов (для командира, наводчика и водителя) 300 миллиметровых инфракрасных поисковых фонарей, а также конвертеров изображения. Несколько вариантов Panther оборудовались комплектами Biwa. Существуют данные об успешных испытаниях, однако имеется всего несколько упоминаний, что данные комплекты применялись в боях на Западном и Восточном фронтах.

Pantherы, оснащенные приборами ночного видения получили несколько танковых подразделений, среди которых: 3-я рота, 24-го танкового полка 116-й танковой дивизии (Западный фронт, лето 1944 года), 6-я танковая армия SS (Венгрия, начало 1945 года), танковые дивизии "Clausewitz" и "Muncheberg". Одним из источников данных о боевом использовании могут служить воспоминания бойца Первого танкового полка "SS", Первой танковой дивизии "SS" "LSSAH", сообщающего, что несколько Panther, вероятно из Сто шестнадцатой танковой дивизии, которые были оснащены приборами ночного видения применялись в 44-45 годах в Арденнах во время германского наступления.

В апреле 45-го года Pnther с IR (вариант "В") были приняты в танковую дивизию "Clausewitz". В середине апреля данными танками в районе города Uelzen был уничтожен взвод английских крейсерских танков Comet. Кроме того, 21 апреля теми же Panther'ами на канале Weser-Elbe была уничтожена американская противотанковая позиция.

Также существуют данные, что было отдельное подразделение вооруженное Jagdpanther оснащёнными ИК-приборами ночного видения.

К концу Второй мировой войны на германских военных заводах в месяц производилось до тысячи ИК-приборов; элитные танковые части СС, оснащенные инфракрасными приборами, несмотря на превосходство войск Советского Союза в артиллерии и танках, в первый день, а точнее ночь, боевых действий у озера Балатон продвинулись в глубину мощной советской обороны на 60 километров.

Экипажи Panther имеющих приборами ночного видения, вооружались винтовками MP44 с ИК-прицелами Вампир (Vampir).

В 1943 году для снайперов создали автомат МР-43/1, на который устанавливали фрезерованное крепление под четырехкратные оптические прицелы ZF-4 и инфракрасные прицелы ночного видения ZG.1229 (Zielgerat 1229) «Vampir» («Вампир»), которые предназначались для наблюдения в условиях естественной ночной освещенности; определения по угловым величинам дальности до цели; наведения на цель оружия и наблюдения за результатом огня, а также его корректирования. Прицел ночного видения спроектировали в Берлине в Forschungsanstalt der Deutschen Reichspost (RPF), а его производство было налажено в г. Ветцлар на фабрике Ernst Leitz – ведущем германском оптико-механическом предприятии. Для опытной эксплуатации изготовили партию автоматов МР.43/1 в количестве 310 шт., оснащенных прицелами «Вампир». Посадочное крепление прицела было установлено с правой стороны от ствольной коробки. Масса прицела с инфракрасным прожектором составляла 2,26 кг, а аккумуляторные батареи, которые переносились в бачке от противогаза и специальном деревянном ящике, 13,59 кг. Оригинально решили проблему батареек – понимая, что любые элементы питания имеют привычку постепенно разряжаться или полностью выходить из строя именно в тот момент, когда это совершенно не допустимо, - конструкторами для снайперов был разработан небольшой генератор, имеющий ручной привод. Перед тем как выйти «на ночную охоту» нужно было покрутить рукоятку на протяжении некоторого времени, после чего система была полностью готова к бою.

Источники:Ненахов Ю.Ю. «Чудо-оружие» Третьего рейха».http://www.achtungpa....eu/panther.phphttp://www.achtungpa...votw/251_20.htmhttp://realidadalter...guerra-mundial/http://www.achtungpa...articles/ir.htmhttp://www.nexusboar...frarot-t233658/http://strangernn.li...com/122754.htmlhttp://www.jaroslaff...rticles_id=1531http://www.weaponlan...stg44/10-1-0-30

topwar.ru

Ночные поля видения » Военное обозрение

Компания ВАЕ Systems разработала улучшенные очки ночного видения Enhanced Night Vision Goggle III и семейство оружейных прицелов Family of Weapon Sights-Individual (ENVG III/FWS-I), в которых объединены две технологии ночного видения, что позволяет солдату быстро обнаружить цель без необходимости поднимать оружие на уровень глаз

По мнению отраслевых специалистов, технологии ночного видения, как усиления яркости изображения, так и тепловизионные, готовы развиваться в предстоящие годы по ряду направлений, начиная от разрешающей способности и до подключения к единой сети. Впрочем, это развитие должно быть сбалансировано с получением наименьших массогабаритных и энергопотребительских характеристик.

Системы ночного видения выпускаются разной формы, от очков до прицелов вооружения. Впрочем, в этой сфере имеется существенный прогресс, поскольку ведущие мировые производители стремятся реагировать на потребности пользователей.

Изменения и комбинации

Кристиан Джонсон, директор по развитию бизнеса в Harris Corporation, обратил особое внимание на растущий спрос на двухокулярные очки ночного видения (ОНВ). «Они относительно новые. Последние полгода со стороны американской армии оказывается серьезное давление на производителей, чтобы те были готовы массово поставлять двухокулярные устройства, сухопутных войскам надо переходить от монокуляра и к бинокуляру».

Бинокль ночного видения Lightweight Night Vision Binocular (F5032), выпущенный компанией Harris в конце 2016 года, легче всех предыдущих моделей. Он значительно снижает усталость глаз в продолжительных задачах за счет объективов с регулируемыми диоптриями, то есть система может быстро настраиваться под зрение своего оператора.

В компании Harris также наблюдают за смещением динамики рынка, где популярность завоевывают системы с белым люминофором. Первоначально выпуск подобных систем определялся потребностью специальных сил, но в настоящее время стал общей тенденцией. Компания не имеет особой точки зрения на преимущества белого против зеленого люминофора и наоборот, хотя во всё больших количествах производит системы с белым люминофором. Однако зеленый люминофор на сегодняшний день очень широко распространен.

В документах компании поясняется что «белый люминофор дает черно-белое изображение, которое может казаться более привычным для глаза. В некоторых ситуациях пользователи заявляют о лучшем контрасте между объектами наряду с более высоким разрешением картинки на больших дистанциях».

«С другой стороны зеленый люминофор использует с выгодой длины волн, которые оптимизируют восприятие мозгом контраста и деталей сцены. Зеленый падает точно в середину цветового спектра глаза, позволяя пользователям лучше определять и интерпретировать обстановку в ночных условиях».

Джонсон пояснил, что Harris делает в основном акцент на технологии усиления яркости изображения (УЯ), хотя и использует технологию совмещения в линейке биноклей i-Aware TM-NVG Fusion (F6045), где объединение изображений с УЯ и тепловизионного (ТПВ) обеспечивается посредством оптического наложения. «Мы улучшили ситуационную осведомленность, ведь оператор может смотреть сразу в оба канала. Например, с совмещением изображений вы можете видеть сквозь туман и другие препятствия, чего УЯ не позволяет делать. Но с УЯ вы можете видеть через стекло, чего не может дать тепловизионная технология. Поэтому их комбинация повышает уровень ситуационной осведомленности оператора, что происходит вокруг него».

Как следствие, бинокли семейства F6045 повышают боевую эффективность в ночных и дневных задачах, а также обеспечивают передачу видео в реальном времени для средств тактической разведки. Эти бинокли позволяют пользователю соединяться с различными элементами боевого порядка, вплоть до штаба роты.

По мнению Эндрю Овена, представителя компании FLIR Surveillance, последние несколько лет возможности тепловидения быстро росли с акцентом на повышение разрешения и меньший размер пикселя в форматах НD при одновременном сохранении почти тех же физических размеров, как у сенсоров со стандартным разрешением. Последние также получили преимущества от этого процесса, поскольку меньшие размеры пикселей позволяют уменьшить размер и конечную стоимость систем. Результат хорошо заметен в современных инфракрасных сенсорах ближнего, среднего и дальнего действия.

Компания FLIR производит линейку прицелов с наложением изображений, включая продвинутый тепловизионный прицел ThermoSight T75, снайперский прицел HISS-XLR (High-Performance Sniper Sight) и ночной прицел ADUNS-S (Advanced Dual-Band Night Sight).

Семейство неохлаждаемых тепловизионных оружейных прицелов NOA компании Meprolight завоевало популярность на рынке дальнобойных снайперских винтовок

На цели

Компания ВАЕ Systems является одним из ведущих игроков в сфере систем визуализации, в частности благодаря своей работе с американской армией. Дейв Харрольд, руководитель направления сенсорных и прицельных систем в компании, одним из приоритетных направлении назвал работы по развитию технологии так называемого быстрого обнаружения цепей - rapid target acquisition (RTA). Идея базируется на беспроводном видеоинтерфейсе между очками и оружейным прицелом, когда изображение с высоким разрешением может передаваться на очки ночного видения и просматриваться на дисплее с высокой четкостью в реальном времени. Это исключает зависимость оператора от подсветки лазером, которая может выдать его противнику.

«Развитие беспроводной технологии RTA позволяет пользователям быстро обнаруживать и захватывать цели с любого места без поднесения оружия к глазам, что повышает безопасность солдата и одновременно его эффективность при работе по цели»,- сказал Харрольд.

RTA используется в программе по улучшенным очкам ночного видения и семейству прицелов вооружения ENVG III/FVTS-I (Enhanced Night Vision Goggle III and Family of Weapon Sights - Individual), в которой компания ВАЕ сотрудничает с американской армией. В этих системах объединены технологии УЯ и ТПВ: первая обеспечивает владение обстановкой, а вторая повышает точность прицеливания. Семейство оружейных прицелов Family of Weapon Sights-Crew Served (FWS-CS) предлагает пулеметчикам возможность поражения целей на больших дистанциях.

По мнению представителя компании Thales, возможности ночного видения повысились и «более не ограничены несколькими счастливыми странами». Он заострил внимание на ряде новых тенденций, например, на совершенствовании неохлаждаемых ИК-систем, которые уже в настоящее время выдают изображение с высоким разрешением. Он уверен, что через несколько лет компания Thales «предложит линейку нынешних приборов обнаружения целей дальнего действия, но со всеми преимуществами неохлаждаемых устройств: быстрое время начала работы, бесшумность, сниженная стоимость, высокая надежность».

Израильская компания Meprolight производит линейку устройств ночного видения разных типов - УЯ, ТПВ и цифровые. Менеджер по продукции Ави Кац сказал, что неохлаждаемые оружейные прицелы семейства NOA завоевали популярность на рынке дальнобойных снайперских винтовок. Впрочем, системы с УЯ стоят дешевле и по сравнению с тепловизорами используются чаще при работе по целям на средних дистанциях.

«Как только вы идете по пути повышения стоимости, военные начинают использовать изделия в зависимости от своих конкретных потребностей. По моему мнению, усилители яркости используются чаще, чем тепловизоры по большей части из-за стоимости».

В январе на выставке Shot Show 2018 в Лас-Вегасе компания Meprolight представила прибор NYX-200. В этом мультиспектральном оружейном прицеле совмещены неохлаждаемая тепловизионная камера и цифровая дневная/ночная камера, что повышает уровень владения обстановкой за счет использования технологии RTA при любых уровнях или условиях освещенности.

«Требования современного поля боя вынуждают носить солдат большое количество систем, сенсоров и оборудования, - сказал представитель компании Meprolight. - Вес этого снаряжения и необходимость работать с массой устройств снижают боевую эффективность и может негативно сказаться на уровне безопасности солдата. Чтобы решить эти проблемы и улучшить качество работы современного солдата, мы разработали прицел NYX-200».

Баланс мощности

Стоимость и массогабаритные и энергопотребительские характеристики (МГЭХ) должны выравниваться с боевыми требованиями к солдатским системам, где ключевыми требованиями являются масса и время работы от аккумуляторов.

Харрольд сказал, что солдаты перегружены из-за того, что должны носить множество батарей для запитывания своих устройств. Им нужны легкие, небольшие, высококачественные оружейные прицелы, что максимально повысить их мобильность на земле. Компания ВАЕ сводит размеры и массу к минимуму за счет использования технологии 12 мкм. «Это позволяет получить более легкие и компактные системы. Наши системы также потребляют меньше энергии по сравнению с традиционными охлаждаемыми системами, что, в конечном счете, уменьшает носимый вес, поскольку теперь требуется меньше аккумуляторов».

Впрочем, в компании Harris полагают, что будет сложно изготовить систему существенно легче ее бинокулярного прибора F5032 (весит менее 500 грамм) без ухудшения конструктивной целостности системы. «В известной мере мы нашли золотую середину, если пойдете по пути облегчения, то проиграете в прочности системы, - сказал Джонсон. - Наши изделия проходят расширенную программу испытаний, одобренную американской армией. Наши очки и трубки должны пройти очень жесткие тесты. Если мы начнем облегчать их, то они начнут ломаться».

Энергопотребление базовых систем с УЯ относительно низкое. Монокуляр Harris AN/PVS-14, например, может работать от одной батарейки АА свыше 24 часов.

Производители прогнозируют, по меньшей мере, еще 10-20 лет спроса на системы с усилением яркости изображения, которые смогут предложить ряд преимуществ по сравнению с тепловизионными технологиями

Впрочем, Джонсон пояснил, что положение дел меняется с развитием технологии. «Вы сталкиваетесь с повышенным энергопотреблением у систем со слиянием изображений, когда вы добавляете тепловизионную камеру, когда вы добавляете дополненную реальность. Все эти технологии потребляют энергию и тем самым переносят проблему на пользователя». Компания Harris работает над увеличением продолжительности работы нашлемных систем.

«Размеры, масса и энергия всегда являются проблемой, мы постоянно работаем в этом направлении, - продолжил Джонсон. - Но, по моему мнению, мы не увидим очки существенно легче тех, над которыми мы работаем сейчас, а это ведь меньше 500 грамм».

Он подчеркнул, что оптимизация МГЭХ не должна проводиться за счет высоких эксплуатационных характеристик - мантра, которую компания FLIR Surveillance закладывает в основу своих проектов. Он добавил, что разработки, направленные на повышение разрешения, уменьшение размера пикселя и расширение диапазона рабочих температур, помогают сохранить этот баланс и увеличить срок службы систем. Прогресс здесь в основном связан с использованием многоэлементных фотоприёмников, работающих в средневолновой и длинноволновой ИК-областях спектра.

В итальянской оборонной компании Leonardo считают, что, несмотря на преимущества использования новых материалов или новых типов аккумуляторов, существуют определенные пределы совершенствования МГЭХ, особенно при реализации новых запросов заказчиков касательно возможности подсоединения в сеть.

Полностью электронно-оптический

Трубки усиления яркости изображения или электронно-оптические преобразователи являются ключевым компонентом устройств ночного видения. Эти системы в последние годы развивались по нескольким направлениям, считают в компании Photonis.

По мнению представителя этой компании Марка Денеса, МГЭХ являются ключевым фактором. Акцент на массу особенно актуален сегодня, учитывая возросший спрос на бинокуляры, которые по природе своей тяжелее монокуляров. «МГЭХ очень важны, ведь каждый грамм ложится на плечи оператора», - заметил Денес.

Компания Photonis производит электронно-оптические преобразователи диаметром 16 мм, что дает снижение массы до 40% по сравнению с трубками 18 мм и позволяет производителям конечной продукции снижать вес своих систем. Компания также сократила энергопотребление своих трубок и улучшила функцию автостробирования, что позволило увеличить продолжительность работы от аккумуляторов.

Компания Photonis производит различные ЭОП, включая трубки XD-4 и XR5, а также трубку 4G, которая была показана на выставке Eurosatory 2014. В компании заявляют, что стандарт, устанавливающий требования к рабочим характеристикам трубки 4G, позволил увеличить дальности обнаружения. Photonis выиграла несколько крупных проектов для своей технологии 4G, поскольку плотно работала с сообществом сил специальных операций и другими военными операторами по повышению возможностей этого устройства, включая более быстрое автостробирование и большие дистанции обнаружения распознавания и идентификации.

Эти трубки поступают производителям для интеграции в оптические прицелы, монокуляры, бинокуляры и другие системы с усилением яркости изображения. Компания в настоящее время работает над дальнейшим повышением характеристик трубок 4G, а также разрабатывает цифровые сенсоры ночного видения, которые она интегрирует в системы с наложением изображений и прицелы, наземные и морские платформы.

Преимущества объединения канала усиления яркости изображения и инфракрасного канала четко представлены на рисунке. Слева только усиление яркости, справа изображение с гораздо большей детализацией благодаря тепловизионному модулю

Оба хороши

По мнению Денеса, тепловизионные системы становится популярнее технологии УЯ, поскольку при росте объемов производства значительно снижется их стоимость. Обе технологии имеют различные задачи и различные преимущества, их возможности зависят от местности, погоды и других факторов. ТПВ было популярно в задачах обнаружения - и до некоторой степени распознавания, но системы с УЯ «до сих пор востребованы из-за лучшей идентификации и ситуационной осведомленности».

«В идеале солдатам необходимы обе технологии ночной видимости, - признал Денес. - Они скорее должны рассматриваться в качестве расширения друг друга, а не как замена одной на другую».

Слияние может предоставить «лучшее обоих миров». ЭОП с высокими характеристиками пока обеспечивают лучшее изображение, чем их цифровые аналоги, «но это как сравнивать круглое с мягким».

«Цифровые системы становятся популярными на наземных и воздушных платформах, - добавил Денес, - поскольку МГЭХ здесь не являются столь серьезной проблемой как в случае со спешенным личным составом». Он ожидает, что солдаты будут и далее использовать технологию УЯ из-за её возможностей, низкой массы и относительной дешевизны.

По мнению Денеса, рынки для цифровых систем и ЭОП просто разные. Компания Photonis и ее военные заказчики считают, что ЭОП «по меньшей мере, будут востребованы еще 10 лет, в результате научных исследований будет реализована масса усовершенствований по ряду направлений, от чувствительности до совмещения с тепловизионной картинкой».

Производители отмечают растущий спрос на бинокуляры в отличие от монокулярных конфигураций, но эти устройства должны еще «подтянуть» свои МГЭХ до необходимого уровня

В поисках соединения

По мнению компании Leonardo, потребность в постоянном поддержании связи на поле боя определяет доступность компонентов, которые позволяют получить сетецентрические возможности. На перспективу в компании ожидают широкое применение в оптических компонентах технологий Wi-Fi, Bluetooth и GPS, более тесно интегрирующие их в цепь оперативного управления.

Ручной прибор разведки и целеуказания Linx этой компании базируется на охлаждаемой матрице и предназначен для всепогодного наблюдения и обнаружения. Прибор относится к сетецентричным системам, позволяя пользователю обмениваться через сеть изображениями и данными.

В компании FLIR считают способность к взаимодействию, определяемую требованием заказчиков, ключевой характеристикой военных приложений. «В солдатские системы в настоящее время интегрированы дешевые коммуникационные микросхемы с низким энергопотреблением, - пояснил ее представитель. - Двухсторонняя связь обеспечивает поддержку удаленным пользователям и повышает уровень ситуационной осведомленности, включая информацию от соседних разведывательных средств».

По мнению Джонсона, системы становятся «умнее». Например, дополненная реальность интегрируется в дисплеи, добавляя еще один слой информации для солдата, тогда как технология становится всё более сетевой. «Системы ночного видения являются одной из частей сетевого окружения солдата, делясь тем, что видят для формирования общей оперативной картинки, которая выдается всему подразделению или передается на более высокий уровень».

Представитель компании Thales отметил также растущий уровень оцифровки систем, открывающий дверь для дополненной реальности. Предложения компании на рынке включают прибор ночного видения BONIE-DI/IRR I2 - «умную» сетевую систему, в которой совмещаются два типа изображений. Система позволяет пользователям визуализировать в дополненной реальности специфические данные, например, GPS, что повышает уровни владения обстановкой и взаимодействия.

Серьезное внимание было уделено потенциалу полностью цифровых ПНВ, хотя, по мнению Джонсона, технология «пока не совсем отработана. Мне кажется, что пока не стоит ждать от нее полной отдачи. Компания Harris проводит большой объем исследований в этой области. Нужен реальный технологический прорыв прежде, чем мы получим носимый на голове цифровой сенсор. Господствовать на рынке систем ночного видения в следующие 15-20 лет будут аналоговые оптические преобразователи, пока им на смену не придет что-то прорывное».

Джонсон подтвердил, однако, что можно встроить какие-то цифровые элементы в аналоговые системы. «В нашей солдатской системе F6045 мы взяли аналоговую систему и связали ее с сетью, тем самым привнесли цифровые возможности, но мы пока используем аналоговые ЭОПы потому, что на данный момент нет ничего лучше. Это отработанная и надежная технология, которая пока не собирается сдавать позиции».

Господин Кац согласился, что цифровая технология ночного видения находится в самом начале пути, но полагает, что она получит быстрое развитие в предстоящие годы.

Харрольд также прогнозирует, что, в конечном счете, системы с УЯ устареют и будут полностью заменены цифровыми системами, которые смогут сами обновляться за счет своих алгоритмов. Он добавил, что промышленность, скорее всего, будет «двигаться к полностью интегрированным системам с беспроводным энергоснабжением, которые объединят портативные источники питания, оружейные прицелы и ПНВ и которые смогут работать без отдыха днем и ночью».

Компания Leonardo предлагает ручной прибор наблюдения и целеуказания Linx, который базируется на охлаждаемой матрице. Сетецентричный прибор всепогодного применения позволяет пользователю обмениваться по сети данными и изображениями

Движение вперед

Имея четкое представление о других сегментах рынка, Кац считает, что «произойдет революция в разрешении тепловизионных систем».

В компании FLIR в свою очередь ожидают увидеть более сильный акцент на обработку изображений и управление питанием с целью снижения зависимости от оптики с большим фокусным расстоянием для больших дистанций и повышения вероятности идентификации целей. Там считают, что «обработка изображений при низком энергопотреблении, улучшающая качество картинки в реальном времени, позволяет повысить уровень доверия при идентификации объекта и обнаружении угрозы».

В последние годы в стандартных системах появились функции выравнивания гистограммы, цифрового подчеркивания деталей и электронной стабилизации. «Этот процесс продолжится по мере развития алгоритмов обработки, в результате чего снизится нагрузка на пользователя, а также ускорится процесс распознавания и идентификации целей».

Использование микродисплеев с высоким разрешением в комбинации с сенсорами с пикселем меньшего размера, обработкой изображений с низким энергопотреблением и беспроводными коммуникациями повышает МЭГХ и способствует развитию возможностей разведки, наблюдения и целеуказания.

Харрольд сказал, что в предстоящие годы дополненная реальность «станет важнейшей технологией для этих систем, она будет интегрирована в будущие прицелы и очки». В приборе ночного видения, работающем в качестве основного дисплея солдата, дополненная реальность обеспечит его важной информацией и тем самым повысит его боевую эффективность.

Это даст ряд преимуществ. Общая оперативная картинка с дополненной реальностью позволит пользователям повысить уровень владения обстановкой. Эта информация могла бы помочь в ряде задач, например, доступ к видео с беспилотника, история применения взрывных устройств в данном районе, идентификация союзных и своих сил, трехмерная карта местности и тому подобное, а также предоставить интерфейс для совместного ведения боевых действии обитаемых и необитаемых платформ.

По материалам сайтов:www.policemag.comwww.recoilweb.comwww.harris.comwww.baesystems.comwww.thalesgroup.com/www.flir.comwww.leonardocompany.comwww.meprolight.comwww.photonis.comspec-naz.orgpinterest.comwww.shutterstock.com

topwar.ru