Российский авиадвигатель ПД-14: возрождение промышленности. Пд 14


ПД-14 | Авиация России

Заявка АО «ОДК-Авиадвигатель» на сертификацию двигателя ПД-14 была подана в Росавиацию в июле 2017 года. В 2017-2018 годах проведён комплекс работ с участием Минпромторга России, АО «ОДК», АО «ОДК-Авиадвигатель», Авиарегистра России и сертификационных центров. Работы по сертификации двигателя ПД-14 находятся на особом контроле, технические совещания с участием АО «ОДК-Авиадвигатель», Авиарегистра […]

Подробнее

  В мировом коммерческом авиастроении ещё с 1960-х годов считается хорошим тоном предлагать самолёт с двумя или даже тремя вариантами двигателей от различных производителей. Это снижает риски программы, и позволяет заказчикам выбрать оптимальный по цене и стоимости эксплуатации вариант. К сожалению, сегодня в отечественной авиации это условие выполняется только на […]

Подробнее

Натурный образец турбовинтового двигателя, созданного для регионального авиалайнера Ил-114-300 и лёгкого военно-транспортного самолёта Ил-112В, представлен на Международном форуме двигателестроения в Москве. Об этом сообщает ТАСС, цитируя пресс-службу Объединенной двигателестроительной корпорации (ОДК). Международный форум двигателестроения (МФД-2018) начал свою работу 4 апреля в одном из павильонов ВДНХ. "Впервые на выставке ОДК демонстрирует […]

Подробнее

28 марта на загородной испытательной станции АО «ОДК-Пермские моторы» в Новых Лядах прошла конференция по представлению программы двигателя ПД-14 потенциальным заказчикам. Были продемонстрированы возможности производственной и испытательной базы «ОДК-Пермские моторы», презентован двигатель ПД-14, его технические и конструктивные особенности, представлены результаты проводимых испытаний и получены специальные требования потенциальных заказчиков по вопросам […]

Подробнее

Объединённая двигателестроительная корпорация, входящая в Госкорпорацию Ростех, приступила к работам по созданию перспективного вертолётного двигателя следующего поколения. При создании двигателя будут использованы новые конструкционные материалы, аддитивные технологии и 3D-печать. Об этом сообщает пресс-служба ГК Ростех. При создании перспективного двигателя будут использованы как уже доказавшие свою эффективность технологии, так и новейшие […]

Подробнее

Система управления двигателя ПД-14 впервые в истории отечественного двигателестроения создается без гидромеханического резерва, за все режимы работы будет отвечать электроника. Об этом рассказал управляющий директор компании ОДК-СТАР (входит в Объединённую двигателестроительную корпорацию, ОДК) Сергей Остапенко. Испытания системы автоматического управления САУ-14 планируется завершить в 2018 году. "Электроника полностью отвечает за все […]

Подробнее

АО «ОДК-Пермские моторы» (входит в Объединённую двигателестроительную корпорацию) подписало с корпорацией «Иркут» договор на поставку пяти двигателей ПД-14 для лётных испытаний самолёта МС-21, сообщает пресс-служба "ОДК-Пермские моторы". Поставки нового двигателя начнутся в конце 2018 года. К этому времени ПД-14 должен получить сертификат типа Федерального агентства воздушного транспорта (Росавиация). Начало лётных […]

Подробнее

В Центральном институте авиационного моторостроения имени П.И. Баранова (ЦИАМ, входит в НИЦ "Институт имени Н.Е. Жуковского") на разгонном стенде проведены испытания по определению стойкости вентилятора двигателя ПД-14 к попаданию крупной одиночной птицы, сообщает пресс-служба НИЦ "Институт имени Н.Е. Жуковского". Экспериментальной работе предшествовала серьёзная подготовка. Стенд прошёл существенную модернизацию. Были изготовлены […]

Подробнее

Объединенная двигателестроительная корпорация (входит в Госкорпорацию Ростех) приступила к третьему этапу лётных испытаний российского гражданского авиационного двигателя пятого поколения ПД-14. Это базовый турбовентиляторный двигатель, который создается в широкой кооперации предприятий ОДК для авиалайнера МС-21-300 с применением новейших технологий и материалов, в том числе, композитных. Об этом сообщает пресс-служба корпорации. Лётные […]

Подробнее

Делегация в составе министра транспорта Максима Соколова, полномочного представителя Президента РФ в Приволжском федеральном округе Михаила Бабича и губернатора Пермского края Максима Решетникова посетили модернизированный закрытый испытательный стенд «ОДК-ПМ» в Перми, сообщает пресс-служба АО "ОДК-Авиадвигатель". В ходе визита гости осмотрели двигатель ПС-90А на адаптерном универсальном стенде, а также двигатель ПД-14, […]

Подробнее

aviation21.ru

Авиадвигатель ПД-14 | Журнал Популярная Механика

О технологиях подготовки и проведения испытаний перспективного российского двигателя «Популярной механике» рассказал Анатолий Дмитриевич Кулаков, заместитель генерального директора ЛИИ им. М.М. Громова по испытаниям силовых установок. Как удалось узнать из нашего разговора, прежде чем двигатель смог отправиться в свой первый полет, специалистам института пришлось решать множество сложнейших инженерных задач. Первой из них стал выбор летающей лаборатории (ЛЛ). В распоряжении ЛИИ есть несколько ЛЛ, созданных на базе самолета Ил-76, но не на каждой можно проводить испытания именно ПД-14. Многое зависит от массы силовой установки (выдержит ли вес крыло?) и тяги, создаваемой ПД-14. Выбор пал на Ил-76 ЛЛ с усиленным крылом, на котором можно разместить силовую установку весом до 9 т и тягой двигателя до 25 000 кгс. Однако этот самолет последний раз привлекался к испытаниям в 1996 году. Тогда к нему подвешивали уникальный винто-вентиляторный двигатель Д-27, предназначавшийся к использованию на украинско-российском самолете Ан-70. После почти двух десятилетий простоя необходимо было восстановить летную годность Ил-76 ЛЛ, для чего составили специальную программу при активном участии ОАО «АКБ им. С.В. Ильюшина». На самолете-ветеране заменили значительную часть оборудования, в том числе пилотажного и навигационного, и получили все необходимые заключения о том, что ЛЛ может отправляться в полет. Что дальше? Подвесить двигатель и начинать испытания? Нет! Все не так просто.

На фото можно увидеть перспективный российский двигатель без гондолы.

Двигатель ПД-14 уникален еще и тем, что впервые в практике отечественного двигателестроения производитель разработал не только сам двигатель, но и гондолу к нему (обычно мотогондолу изготавливает под конкретный двигатель фирма, создающая самолет). Таким образом, у двигателя уже есть крепление, рассчитанное на пилон МС-21, и к крылу Ил-76ЛЛ оно не подходит. Специалистам ЛИИ пришлось конструировать специальную силовую проставку — переходник между креплениями пилона МС-21 и крыла Ил-76ЛЛ.

На этом фото запечатлен процесс подвешивания гондолы с двигателем к пилону летающей лаборатории. Для соединения креплений разных типов применен специальный силовой переходник.

Куда девать энергию?

Самая же главная инженерная проблема в том, что новый двигатель не может испытываться под управлением штатных систем ЛЛ. В лаборатории необходимо воссоздать все системы управления экспериментальной силовой установкой, схожие с теми, что будут использованы на МС-21, а также достоверно воспроизвести все нагрузки, под которыми будет работать двигатель. С этой целью перед испытаниями необходимо было сконструировать и встроить в летающую лабораторию все соответствующее оборудование.

Двигатель не только создает реактивную тягу, он — энергетическое сердце самолета. С помощью вала и редуктора вал турбины высокого давления связан с КПСА (коробкой приводов самолетных агрегатов). В КПСА передаваемый туда крутящий момент «разбирается» электрогенератором и гидравлическими насосами. Сейчас от двигателей требуется как можно больше электрической мощности, особенно ввиду тенденции к замене ряда гидравлических приводов электрическими. На Ил-76ЛЛ установлена система отбора электрической мощности. Отбираемая от генератора мощность реализуется в специальных тепловых электрозагружателях (ТЭН), которые установлены в обтекателях, обдуваемых в полете наружным воздухом.

На заднем плане виден главный пульт управления опытным двигателем: сидя за этим пультом, ведущий инженер ЛИИ управляет режимами ПД-14 в ходе испытательного полета. Ближе к нам — рабочие места других специалистов, отслеживающих параметры работы двигателя.

Кроме крутящего момента от двигателя отбирается сжатый воздух, который поступает в системы самолета МС-21. Отбор воздуха для разных целей производится в нескольких точках газогенератора. Например, после третьей ступени компрессора отводится воздух для нужд кондиционирования пассажирского салона МС-21. На летающей лаборатории нет системы отбора воздуха с параметрами системы кондиционирования, аналогичной той, что будет в МС-21, так как отбор сжатого воздуха — это отбор мощности от двигателя, а значит, во время испытаний эта нагрузка также должна быть реализована. ЛЛ также насыщена контрольно-измерительным оборудованием. При эксплуатации серийного двигателя бортовой параметрический самописец регистрирует 30−40 параметров работы установки. В ходе испытаний с экспериментального двигателя, оборудованного множеством датчиков, снимается 1066 параметров. Данные поступают на центральный сервер, на пульт ведущего инженера в грузовой кабине Ил-76ЛЛ, на дисплей в кабине пилотов, по радиоканалу в наземный контрольный пункт и непосредственно специалистам в Пермь, в ОАО «Авиадвигатель».

Рабочее место одного из инженеров, участвующих в испытаниях, и шкаф с вычислительной техникой, анализирующей данные с помощью специально разработанного ПО.

Соло на одном моторе

Когда наступает время поднять ЛЛ в воздух, в кресла летного экипажа садятся опытнейшие летчики-испытатели ЛИИ им. М.М. Громова. В грузовой кабине места у пультов занимают инженеры-испытатели. В распоряжении пилотов все обычные системы управления самолетом Ил-76ЛЛ и его двигателями. И только экспериментальным двигателем управляет ведущий инженер-испытатель из ЛИИ. Рядом с ним за центральным пультом еще один представитель ЛИИ и инженер от предприятия-разработчика ПД-14. «Взлетаем мы на трех двигателях по специальной методике, чтобы из-за несимметричной тяги самолет не слетел с полосы, — рассказывает Александр Крутов, заслуженный летчик-испытатель, Герой России, начальник Школы летчиков-испытателей ЛИИ. — На данной стадии испытаний на взлете опытный двигатель работает только на малом газе. Сначала прогреваем три штатных двигателя. Потом второй двигатель, симметричный опытному, убираем на малый газ и потихоньку начинаем разбег. Выводим на взлетный режим 1-й и 4-й штатные двигатели. Затем в процессе разбега плавно выводим 3-й штатный двигатель на взлетный режим. Отрываемся на трех, набираем высоту. Так удается на взлете избежать опасных разворачивающих моментов».

www.popmech.ru

ПД14 - факты, технологии, испытания

22 Apr 2017 21:53

30 октября 2015 года начались испытания новейшего российского авиационного двигателя ПД-14 на летающей лаборатории Ил-76ЛЛ. Это событие исключительной важности. Только четыре страны в мире: Россия, США , Англия и Франция владеют технологиями полного цикла создания современных турбореактивных двигателей.Управляющий директор — генеральный конструктор АО «ОДК-Авиадвигатель» Александр Иноземцев 16 марта 2017 года рассказал о ходе лётных испытаний перспективного двигателя ПД-14, разработанного конструкторским бюро. Первый этап лётных испытаний был завершен в 2016 году, до конца марта мы отлетаем второй этап. Наконец, уже собирается двигатель, который будет летать в третьем этапе испытаний, уже сертификационном», — пояснил он.По словам Александра Иноземцева, сроки сертификации двигателя ПД-14 остаются неизменными. «Пока мы держимся за апрель 2018 года, и валидацию в Европе в 2018 году», — заявляет генеральный конструктор.ТРД – крайне сложное устройство.

В наиболее трудных условиях работает его турбина. Её важнейший элемент – лопатка, с помощью которой кинетическая энергия газового потока преобразуется в механическую энергию вращения. Одна лопатка, а их в каждой ступени авиационной турбины насчитывается около 70, развивает мощность, равную мощности двигателя автомобиля «Формулы-1», а при частоте вращения турбины порядка 12 тыс. оборотов в минуту на лопатку действует центробежная сила, равная 18 тоннам, что равняется нагрузке на подвеску двухэтажного лондонского автобуса. Температура газа, с которым соприкасается лопатка, почти равна половине температуры на поверхности Солнца. Эта величина на 200 °С превышает температуру плавления интерметаллида (алюминида титана), из которого изготавливается лопатка. Представьте себе такую задачу: требуется не дать растаять кубику льда в печи, нагретой до 200 °С. Конструкторы умудряются решить проблему охлаждения лопатки с помощью внутренних воздушных каналов и специальных покрытий. Причём, при сохранении всех прочностных характеристик, лопатки из интерметаллида титана намного легче, чем аналогичные, выполненные по используемой ранее технологии литья из никелевых сплавов. Неудивительно, что одна лопатка стоит в восемь раз дороже серебра. Для создания только этой небольшой детали, которая помещается в ладони, необходимо разработать более десятка сложнейших технологий. И каждая из этих технологий оберегается как важнейшая государственная тайна. Технологии ТРД важнее атомных секретов Кроме отечественных компаний, только фирмы США (Pratt & Whitney, General Electric, Honeywell), Англии (Rolls-Royce) и Франции (Snecma) владеют технологиями полного цикла создания современных ТРД. То есть государств, производящих современные авиационные ТРД, меньше, чем стран, обладающих ядерным оружием или запускающих в космос спутники. Многолетние усилия Китая, к примеру, до сих пор так и не привели к успеху в этой области. Китайцы быстро скопировали и оснастили собственными системами российский истребитель Су-27, выпуская его под индексом J-11. Однако скопировать его двигатель АЛ-31Ф им так и не удалось, поэтому Китай до сих пор вынужден закупать этот уже давно не самый современный ТРД в России.ПД-14 – первый отечественный авиадвигатель 5-го поколенияПрогресс в авиадвигателестроении характеризуется несколькими параметрами, но одним из главных считается температура газа перед турбиной. Переход к каждому новому поколению ТРД, а всего их насчитывают пять, характеризовался ростом этой температуры на 100–200 градусов. Так, температура газа у ТРД 1-го поколения, появившихся в конце 1940-х годов, не превышала 1150 °К, у 2-го поколения (1950-е гг.) этот показатель вырос до 1250 °К, в 3-м поколении (1960-е гг.) этот параметр поднялся до 1450 °К, у двигателей 4-го поколения (1970–1980 гг.) температура газа дошла до 1650 °К. Лопатки турбин двигателей 5-го поколения, первые образцы которых появились на Западе в середине 90-х, работают при температуре 1900 °К. В настоящее время в мире только 15% двигателей, находящихся в эксплуатации, относятся к 5-му поколению. Увеличение температуры газа, а также новые конструктивные схемы, в первую очередь двухконтурность, позволили за 70 лет развития ТРД добиться впечатляющего прогресса. К примеру, отношение тяги двигателя к его массе увеличилось за это время в 5 раз и для современных моделей дошло до 10. Степень сжатия воздуха в компрессоре увеличилась в 10 раз: с 5 до 50, при этом число ступеней компрессора уменьшилось вдвое – в среднем с 20 до 10. Удельный расход топлива современных ТРД сократился вдвое по сравнению с двигателями 1-го поколения. Каждые 15 лет происходит удвоение объёма пассажирских перевозок в мире при почти неизменных совокупных затратах топлива мировым парком самолётов. В настоящее время в России производится единственный гражданский авиадвигатель 4-го поколения – ПС-90. Если сравнивать с ним ПД-14, то у двух двигателей схожие массы (2950 кг у базовой версии ПС-90А и 2870 кг у ПД-14), габариты (диаметр вентилятора у обоих 1,9 м), степень сжатия (35,5 и 41) и взлётная тяга (16 и 14 тс). При этом компрессор высокого давления ПД-14 состоит из 8 ступеней, а ПС-90 – из 13 при меньшей суммарной степени сжатия. Степень двухконтурности у ПД-14 вдвое выше (4,5 у ПС-90 и 8,5 у ПД-14) при том же диаметре вентилятора. В итоге удельный расход топлива в крейсерском полёте у ПД-14 упадёт, по предварительным оценкам, на 15% по сравнению с существующими двигателями: до 0,53–0,54 кг/(кгс·ч) против 0,595 кг/(кгс·ч) у ПС-90.ПД-14 – первый авиадвигатель, созданный в России после распада СССРКогда Владимир Путин поздравлял российских специалистов с началом испытаний ПД-14, он сказал, что последний раз подобное событие в нашей стране произошло 29 лет назад. Скорее всего, имелось в виду 26 декабря 1986 года, когда состоялся первый полёт Ил-76ЛЛ по программе испытаний ПС-90А.

Советский Союз был великой авиационной державой. В 1980-е годы в СССР работали восемь мощнейших авиадвигательных ОКБ. Зачастую фирмы конкурировали друг с другом, поскольку существовала практика давать одно и то же задание двум ОКБ. Увы, времена изменились. После развала 1990-х годов пришлось собирать все отраслевые силы, чтобы осуществить проект создания современного двигателя. Собственно, формирование в 2008 году ОДК (Объединенной двигателестроительной корпорации), со многими предприятиями которой активно сотрудничает банк ВТБ, и имело целью создание организации, способной не только сохранить компетенции страны в газотурбостроении, но и конкурировать с ведущими фирмами мира.

Головным исполнителем работ по проекту ПД-14 является ОКБ «Авиадвигатель» (Пермь), которое, кстати, разрабатывало и ПС-90. Серийное производство организуется на Пермском моторном заводе, но детали и комплектующие будут изготавливаться по всей стране. В кооперации участвуют Уфимское моторостроительное производственное объединение (УМПО), НПО «Сатурн» (Рыбинск), НПЦГ «Салют» (Москва), «Металлист-Самара» и многие другие.

ПД-14 – двигатель для магистрального самолёта XXI векаОдним из самых удачных проектов в области гражданской авиации СССР был среднемагистральный самолёт Ту-154. Выпущенный в количестве 1026 шт., он долгие годы составлял основу парка «Аэрофлота». Увы, время идет, и этот трудяга уже не отвечает современным требованиям ни по экономичности, ни по экологии (шум и вредные выбросы). Главная слабость Ту-154 – двигатели 3-го поколения Д-30КУ с высоким удельным расходом топлива (0,69 кг/кгс·ч).

Пришедший на смену Ту-154 среднемагистральный Ту-204 с двигателями 4-го поколения ПС-90 в условиях распада страны и свободного рынка не смог выдержать конкуренцию с зарубежными производителями даже в борьбе за отечественных авиаперевозчиков. Между тем сегмент среднемагистральных узкофюзеляжных самолётов, в котором господствуют Boeing-737 и Airbus 320 (только в 2015 году их было поставлено авиакомпаниям мира 986 шт.), – самый массовый, и присутствие на нём – необходимое условие сохранения отечественного гражданского самолётостроения. Таким образом, в начале 2000-х годов была выявлена острая необходимость создания конкурентоспособного ТРД нового поколения для среднемагистрального самолёта на 130–170 мест. Таким самолётом должен стать МС-21 (Магистральный самолет XXI века), разрабатываемый Объединенной авиастроительной корпорацией. Задача невероятно сложная, поскольку конкуренцию с Boeing и Airbus не выдержал не только Ту-204, но и ни один другой самолёт в мире. Именно под МС-21 и разрабатывается ПД-14. Удача в этом проекте будет сродни экономическому чуду, но подобные начинания – единственный способ для российской экономики слезть с нефтяной иглы.

ПД-14 – базовый проект для семейства двигателейБуквы «ПД» расшифровываются как перспективный двигатель, а число 14 – тяга в тонна-силах. ПД-14 – это базовый двигатель для семейства ТРД тягой от 8 до 18 тс. Бизнес-идея проекта состоит в том, что все эти двигатели создаются на основе унифицированного газогенератора высокой степени совершенства. Газогенератор – это сердце ТРД, которое состоит из компрессора высокого давления, камеры сгорания и турбины. Именно технологии изготовления этих узлов, прежде всего так называемой горячей части, являются критическими.

Семейство двигателей на базе ПД-14 позволит оснастить современными силовыми установками практически все российские самолёты: от ПД-7 для ближнемагистрального «Сухой Суперджет 100» до ПД-18, который можно установить на флагман российского самолётостроения – дальнемагистральный Ил-96. На базе газогенератора ПД-14 планируется разработать вертолётный двигатель ПД-10В для замены украинского Д-136 на самом большом в мире вертолёте Ми-26. Этот же двигатель можно использовать и на российско-китайском тяжёлом вертолёте, разработка которого уже началась. На базе газогенератора ПД-14 могут быть созданы и так необходимые России газоперекачивающие установки и газотурбинные электростанции мощностью от 8 до 16 МВт.

ПД-14 – это 16 критических технологийДля ПД-14, при ведущей роли Центрального института авиационного моторостроения (ЦИАМ), головного НИИ отрасли и ОКБ «Авиадвигатель», было разработано 16 критических технологий: монокристаллические лопатки турбины высокого давления с перспективной системой охлаждения, работоспособные при температуре газа до 2000°К, пустотелая широкохордная лопатка вентилятора из титанового сплава, благодаря которой удалось повысить КПД вентиляторной ступени на 5% в сравнении с ПС-90, малоэмиссионная камера сгорания из интерметаллидного сплава, звукопоглощающие конструкции из композиционных материалов, керамические покрытия на деталях горячей части, полые лопатки турбины низкого давления и др.

ПД-14 и в дальнейшем будет совершенствоваться. На МАКС-2015 уже можно было увидеть созданный в ЦИАМ прототип широкохордной лопатки вентилятора из углепластика, масса которой составляет 65% от массы пустотелой титановой лопатки, применяемой сейчас. На стенде ЦИАМ можно было видеть и прототип редуктора, которым предполагается оснастить модификацию ПД-18Р. Редуктор позволит снизить обороты вентилятора, благодаря чему, не привязанный к оборотам турбины, он будет работать в более эффективном режиме. Предполагается поднять на 50°К и температуру газа перед турбиной. Это позволит увеличить тягу ПД-18Р до 20 тс, а удельный расход топлива сократить еще на 5%.

ПД-14 – это 20 новых материаловПри создании ПД-14 разработчики с самого начала сделали ставку на отечественные материалы. Было ясно, что российским компаниям ни при каких условиях не предоставят доступ к новым материалам зарубежного производства. Здесь ведущую роль сыграл Всероссийский институт авиационных материалов (ВИАМ), при участии которого для ПД-14 разработано порядка 20 новых материалов.

В 2015 году специалисты ВИАМ впервые в стране изготовили завихритель фронтового устройства камеры сгорания ПД-14 с применением отечественной металлопорошковой композиции.

Но создать материал – полдела. Иногда российские металлы превосходят по качеству зарубежные, но для их использования в гражданском авиадвигателе необходима сертификация по международным нормам. Иначе двигатель, как бы он ни был хорош, не допустят к полётам за пределами России. Правила тут очень строги, поскольку речь идёт о безопасности людей. То же самое относится и к процессу изготовления двигателя: предприятиям отрасли требуется сертификация по нормам Европейского агентства авиационной безопасности (ЕASA). Всё это заставит повысить культуру производства, а под новые технологии необходимо провести перевооружение отрасли. Сама разработка ПД-14 проходила по новой, цифровой технологии, благодаря чему уже 7-й экземпляр двигателя был собран в Перми по технологии серийного производства, в то время как раньше опытная партия изготовлялась в количестве до 35 экземпляров.ПД-14 должен вытащить на новый уровень всю отрасль. Да что говорить, даже летающая лаборатория Ил-76ЛЛ после нескольких лет простоя нуждалась в дооснащении оборудованием. Нашлась работа и для уникальных стендов ЦИАМ, позволяющих на земле имитировать условия полёта. В целом же проект ПД-14 сохранит для России более 10 000 высококвалифицированных рабочих мест.

ПД-14 – первый отечественный двигатель, который напрямую конкурирует с западным аналогомРазработка современного двигателя занимает в 1,5–2 раза больше времени, чем разработка самолёта. С ситуацией, когда двигатель не успевает к началу испытаний самолёта, для которого он предназначен, авиастроители сталкиваются, увы, регулярно. Вот и выкатка первого экземпляра МС-21 состоится в 2016 году, а испытание ПД-14 только начались. Правда, в проекте с самого начала предусматривалась альтернатива: заказчики МС-21 могут выбирать между ПД-14 и PW1400G компании Pratt & Whitney. Именно с американским двигателем МС-21 и уйдёт в первый полёт, и именно с ним ПД-14 предстоит конкурировать за место под крылом.По сравнению с конкурентом, ПД-14 несколько уступает в экономичности, но зато он легче, имеет заметно меньший диаметр (1,9 м против 2,1), а значит, и меньшее сопротивление. И ещё одна особенность: российские специалисты сознательно пошли на некоторое упрощение конструкции. Базовый ПД-14 не использует редуктор в приводе вентилятора, а также не применяет регулируемое сопло внешнего контура, у него ниже температура газа перед турбиной, что упрощает достижение показателей надёжности и ресурса. Поэтому двигатель ПД-14 дешевле и, по предварительным оценкам, потребует меньших затрат на техническое обслуживание и ремонт. Кстати, в условиях падения цен на нефть именно более низкие эксплуатационные расходы, а не экономичность становятся схемообразующим фактором и главным конкурентным преимуществом авиадвигателя. В целом прямые эксплуатационные расходы МС-21 с ПД-14 могут быть на 2,5% ниже, чем у версии с американским двигателем.

Семейство перспективных ТРДД для семейства магистральных самолётов состоит из двигателей ПД-14, ПД-14А, ПД-14М и ПД-10:

  • ПД-14 - базовый ТРДД для самолета МС-21-300;
  • ПД-14А - дросселированный вариант ТРДД для самолета МС-21-200;
  • ПД-14М - форсированный вариант ТРДД для самолета МС-21-400;
  • ПД-10 - вариант с уменьшенной тягой до 10…11 тс для самолета SSJ‑NG.
Основные параметры двигателей, без учёта потерь в воздухозаборнике и без отборов воздуха и мощности на самолётные нужды ПД-14А ПД-14 ПД-14М ПД-10
Тяга на взлетном режиме (Н = 0; М = 0), тс 12,5 14 15,6 10,9
Удельный расход топлива на крейсерском режиме, кг/кгс·ч -(10-15) % -(10-15) % -(10-15) % -(10-15) %
Диаметр вентилятора, мм 1900 1900 1900 1670
Сухая масса двигателя, кг 2870 2870 2970 2350
Схема двигателя 1+3+8-2+6 1+3+8-2+6 1+4+8-2+6 1+1+8-2+5

mc-21.wikidot.com

ПД-14 – двигатель прогресса - Константин Шуров

По статистике лишь один полет из 8 млн заканчивается аварией с гибелью людей. Даже если вы будете каждый день садиться на случайный рейс, вам понадобится 21 000 лет, чтобы погибнуть в авиакатастрофе. Согласно статистике, ходить пешком во много раз опаснее, чем летать. И все это во многом благодаря потрясающей надежности современных авиадвигателей.

2.

Чудо техники

А ведь ТРД – крайне сложное устройство. В наиболее трудных условиях работает его турбина. Ее важнейший элемент – лопатка, с помощью которой кинетическая энергия газового потока преобразуется в механическую энергию вращения. Одна лопатка, а их в каждой ступени авиационной турбины насчитывается около 70, развивает мощность, равную мощности двигателя автомобиля «Формулы-1», а при частоте вращения порядка 12 тыс. оборотов в минуту на нее действует центробежная сила, равная 18 тоннам, что равняется нагрузке на подвеску двухэтажного лондонского автобуса.

Но и это еще не все. Температура газа, с которым соприкасается лопатка, почти равна половине температуры на поверхности Солнца. Эта величина на 200 °С превышает температуру плавления металла, из которого изготавливается лопатка. Представьте себе такую задачу: требуется не дать растаять кубику льда в печи, нагретой до 200 °С. Конструкторы умудряются решить проблему охлаждения лопатки с помощью внутренних воздушных каналов и специальных покрытий. Неудивительно, что одна лопатка стоит в восемь раз дороже серебра. Для создания только этой небольшой детали, которая помещается в ладони, необходимо разработать более десятка сложнейших технологий. И каждая из этих технологий оберегается как важнейшая государственная тайна.

3.

Технологии ТРД важнее атомных секретов

Кроме отечественных компаний, только фирмы США (Pratt & Whitney, General Electric, Honeywell), Англии (Rolls-Royce) и Франции (Snecma) владеют технологиями полного цикла создания современных ТРД. То есть государств, производящих современные авиационные ТРД, меньше, чем стран, обладающих ядерным оружием или запускающих в космос спутники. Многолетние усилия Китая, к примеру, до сих пор так и не привели к успеху в этой области. Китайцы быстро скопировали и оснастили собственными системами российский истребитель Су-27, выпуская его под индексом J-11. Однако скопировать его двигатель АЛ-31Ф им так и не удалось, поэтому Китай до сих пор вынужден закупать этот уже давно не самый современный ТРД в России.

4.

ПД-14 – первый отечественный авиадвигатель 5-го поколения

Прогресс в авиадвигателестроении характеризуется несколькими параметрами, но одним из главных считается температура газа перед турбиной. Переход к каждому новому поколению ТРД, а всего их насчитывают пять, характеризовался ростом этой температуры на 100–200 градусов. Так, температура газа у ТРД 1-го поколения, появившихся в конце 1940-х годов, не превышала 1150 °К, у 2-го поколения (1950-е гг.) этот показатель вырос до 1250 °К, в 3-м поколении (1960-е гг.) этот параметр поднялся до 1450 °К, у двигателей 4-го поколения (1970–1980 гг.) температура газа дошла до 1650 °К. Лопатки турбин двигателей 5-го поколения, первые образцы которых появились на Западе в середине 90-х, работают при температуре 1900 °К. В настоящее время в мире только 15% двигателей, находящихся в эксплуатации, относятся к 5-му поколению.

Одна лопатка авиационной турбины развивает мощность, равную мощности двигателя автомобиля «Формулы-1»

Увеличение температуры газа, а также новые конструктивные схемы, в первую очередь двухконтурность, позволили за 70 лет развития ТРД добиться впечатляющего прогресса. К примеру, отношение тяги двигателя к его массе увеличилось за это время в 5 раз и для современных моделей дошло до 10. Степень сжатия воздуха в компрессоре увеличилась в 10 раз: с 5 до 50, при этом число ступеней компрессора уменьшилось вдвое – в среднем с 20 до 10. Удельный расход топлива современных ТРД сократился вдвое по сравнению с двигателями 1-го поколения. Каждые 15 лет происходит удвоение объема пассажирских перевозок в мире при почти неизменных совокупных затратах топлива мировым парком самолетов.

В настоящее время в России производится единственный гражданский авиадвигатель 4-го поколения – ПС-90. Если сравнивать с ним ПД-14, то у двух двигателей схожие массы (2950 кг у базовой версии ПС-90А и 2870 кг у ПД-14), габариты (диаметр вентилятора у обоих 1,9 м), степень сжатия (35,5 и 41) и взлетная тяга (16 и 14 тс).

При этом компрессор высокого давления ПД-14 состоит из 8 ступеней, а ПС-90 – из 13 при меньшей суммарной степени сжатия. Степень двухконтурности у ПД-14 вдвое выше (4,5 у ПС-90 и 8,5 у ПД-14) при том же диаметре вентилятора. В итоге удельный расход топлива в крейсерском полете у ПД-14 упадет, по предварительным оценкам, на 15% по сравнению с существующими двигателями: до 0,53–0,54 кг/(кгс·ч) против 0,595 кг/(кгс·ч) у ПС-90.

5.

ПД-14 – первый авиадвигатель, созданный в России после распада СССР

Когда Владимир Путин поздравлял российских специалистов с началом испытаний ПД-14, он сказал, что последний раз подобное событие в нашей стране произошло 29 лет назад. Скорее всего, имелось в виду 26 декабря 1986 года, когда состоялся первый полет Ил-76ЛЛ по программе испытаний ПС-90А.

Советский Союз был великой авиационной державой. В 1980-е годы в СССР работали восемь мощнейших авиадвигательных ОКБ. Зачастую фирмы конкурировали друг с другом, поскольку существовала практика давать одно и то же задание двум ОКБ. Увы, времена изменились. После развала 1990-х годов пришлось собирать все отраслевые силы, чтобы осуществить проект создания современного двигателя. Собственно, формирование в 2008 году ОДК (Объединенной двигателестроительной корпорации), со многими предприятиями которой активно сотрудничает банк ВТБ, и имело целью создание организации, способной не только сохранить компетенции страны в газотурбостроении, но и конкурировать с ведущими фирмами мира.

Головным исполнителем работ по проекту ПД-14 является ОКБ «Авиадвигатель» (Пермь), которое, кстати, разрабатывало и ПС-90. Серийное производство организуется на Пермском моторном заводе, но детали и комплектующие будут изготавливаться по всей стране. В кооперации участвуют Уфимское моторостроительное производственное объединение (УМПО), НПО «Сатурн» (Рыбинск), НПЦГ «Салют» (Москва), «Металлист-Самара» и многие другие.

6.

ПД-14 – двигатель для магистрального самолета XXI века

Одним из самых удачных проектов в области гражданской авиации СССР был среднемагистральный самолет Ту-154. Выпущенный в количестве 1026 шт., он долгие годы составлял основу парка «Аэрофлота». Увы, время идет, и этот трудяга уже не отвечает современным требованиям ни по экономичности, ни по экологии (шум и вредные выбросы). Главная слабость Ту-154 – двигатели 3-го поколения Д-30КУ с высоким удельным расходом топлива (0,69 кг/(кгс·ч).

Государств, производящих современные авиационные ТРД, меньше, чем стран, обладающих ядерным оружием

Пришедший на смену Ту-154 среднемагистральный Ту-204 с двигателями 4-го поколения ПС-90 в условиях распада страны и свободного рынка не смог выдержать конкуренцию с зарубежными производителями даже в борьбе за отечественных авиаперевозчиков. Между тем сегмент среднемагистральных узкофюзеляжных самолетов, в котором господствуют Boeing-737 и Airbus 320 (только в 2015 году их было поставлено авиакомпаниям мира 986 шт.), – самый массовый, и присутствие на нем – необходимое условие сохранения отечественного гражданского самолетостроения. Таким образом, в начале 2000-х годов была выявлена острая необходимость создания конкурентоспособного ТРД нового поколения для среднемагистрального самолета на 130–170 мест. Таким самолетом должен стать МС-21 (Магистральный самолет XXI века), разрабатываемый Объединенной авиастроительной корпорацией. Задача невероятно сложная, поскольку конкуренцию с Boeing и Airbus не выдержал не только Ту-204, но и ни один другой самолет в мире. Именно под МС-21 и разрабатывается ПД-14. Удача в этом проекте будет сродни экономическому чуду, но подобные начинания – единственный способ для российской экономики слезть с нефтяной иглы.

7.

ПД-14 – базовый проект для семейства двигателей

Буквы «ПД» расшифровываются как перспективный двигатель, а число 14 – тяга в тонна-силах. ПД-14 – это базовый двигатель для семейства ТРД тягой от 8 до 18 тс. Бизнес-идея проекта состоит в том, что все эти двигатели создаются на основе унифицированного газогенератора высокой степени совершенства. Газогенератор – это сердце ТРД, которое состоит из компрессора высокого давления, камеры сгорания и турбины. Именно технологии изготовления этих узлов, прежде всего так называемой горячей части, являются критическими.

Семейство двигателей на базе ПД-14 позволит оснастить современными силовыми установками практически все российские самолеты: от ПД-7 для ближнемагистрального «Сухой Суперджет 100» до ПД-18, который можно установить на флагман российского самолетостроения – дальнемагистральный Ил-96. На базе газогенератора ПД-14 планируется разработать вертолетный двигатель ПД-10В для замены украинского Д-136 на самом большом в мире вертолете Ми-26. Этот же двигатель можно использовать и на российско-китайском тяжелом вертолете, разработка которого уже началась. На базе газогенератора ПД-14 могут быть созданы и так необходимые России газоперекачивающие установки и газотурбинные электростанции мощностью от 8 до 16 МВт.

8.

ПД-14 – это 16 критических технологий

Для ПД-14, при ведущей роли Центрального института авиационного моторостроения (ЦИАМ), головного НИИ отрасли и ОКБ «Авиадвигатель», было разработано 16 критических технологий: монокристаллические лопатки турбины высокого давления с перспективной системой охлаждения, работоспособные при температуре газа до 2000 °К, пустотелая широкохордная лопатка вентилятора из титанового сплава, благодаря которой удалось повысить КПД вентиляторной ступени на 5% в сравнении с ПС-90, малоэмиссионная камера сгорания из интерметаллидного сплава, звукопоглощающие конструкции из композиционных материалов, керамические покрытия на деталях горячей части, полые лопатки турбины низкого давления и др.

ПД-14 и в дальнейшем будет совершенствоваться. На МАКС-2015 уже можно было увидеть созданный в ЦИАМ прототип широкохордной лопатки вентилятора из углепластика, масса которой составляет 65% от массы пустотелой титановой лопатки, применяемой сейчас. На стенде ЦИАМ можно было видеть и прототип редуктора, которым предполагается оснастить модификацию ПД-18Р. Редуктор позволит снизить обороты вентилятора, благодаря чему, не привязанный к оборотам турбины, он будет работать в более эффективном режиме. Предполагается поднять на 50 °К и температуру газа перед турбиной. Это позволит увеличить тягу ПД-18Р до 20 тс, а удельный расход топлива сократить еще на 5%.

9.

ПД-14 – это 20 новых материалов

При создании ПД-14 разработчики с самого начала сделали ставку на отечественные материалы. Было ясно, что российским компаниям ни при каких условиях не предоставят доступ к новым материалам зарубежного производства. Здесь ведущую роль сыграл Всероссийский институт авиационных материалов (ВИАМ), при участии которого для ПД-14 разработано порядка 20 новых материалов.

Но создать материал – полдела. Иногда российские металлы превосходят по качеству зарубежные, но для их использования в гражданском авиадвигателе необходима сертификация по международным нормам. Иначе двигатель, как бы он ни был хорош, не допустят к полетам за пределами России. Правила тут очень строги, поскольку речь идет о безопасности людей. То же самое относится и к процессу изготовления двигателя: предприятиям отрасли требуется сертификация по нормам Европейского агентства авиационной безопасности (ЕASA). Все это заставит повысить культуру производства, а под новые технологии необходимо провести перевооружение отрасли. Сама разработка ПД-14 проходила по новой, цифровой технологии, благодаря чему уже 7-й экземпляр двигателя был собран в Перми по технологии серийного производства, в то время как раньше опытная партия изготовлялась в количестве до 35 экземпляров.

Разработка современного двигателя занимает в 1,5–2 раза больше времени, чем разработка самолета

ПД-14 должен вытащить на новый уровень всю отрасль. Да что говорить, даже летающая лаборатория Ил-76ЛЛ после нескольких лет простоя нуждалась в дооснащении оборудованием. Нашлась работа и для уникальных стендов ЦИАМ, позволяющих на земле имитировать условия полета. В целом же проект ПД-14 сохранит для России более 10 000 высококвалифицированных рабочих мест.

10.

ПД-14 – первый отечественный двигатель, который напрямую конкурирует с западным аналогом

Разработка современного двигателя занимает в 1,5–2 раза больше времени, чем разработка самолета. С ситуацией, когда двигатель не успевает к началу испытаний самолета, для которого он предназначен, авиастроители сталкиваются, увы, регулярно. Вот и выкатка первого экземпляра МС-21 состоится в начале 2016 года, а испытание ПД-14 только начались. Правда, в проекте с самого начала предусматривалась альтернатива: заказчики МС-21 могут выбирать между ПД-14 и PW1400G компании Pratt & Whitney. Именно с американским двигателем МС-21 и уйдет в первый полет, и именно с ним ПД-14 предстоит конкурировать за место под крылом.

По сравнению с конкурентом, ПД-14 несколько уступает в экономичности, но зато он легче, имеет заметно меньший диаметр (1,9 м против 2,1), а значит, и меньшее сопротивление. И еще одна особенность: российские специалисты сознательно пошли на некоторое упрощение конструкции. Базовый ПД-14 не использует редуктор в приводе вентилятора, а также не применяет регулируемое сопло внешнего контура, у него ниже температура газа перед турбиной, что упрощает достижение показателей надежности и ресурса. Поэтому двигатель ПД-14 дешевле и, по предварительным оценкам, потребует меньших затрат на техническое обслуживание и ремонт. Кстати, в условиях падения цен на нефть именно более низкие эксплуатационные расходы, а не экономичность становятся схемообразующим фактором и главным конкурентным преимуществом авиадвигателя. В целом прямые эксплуатационные расходы МС-21 с ПД-14 могут быть на 2,5% ниже, чем у версии с американским двигателем.

На сегодняшний день заказано 175 МС-21, из них 35 – с двигателем ПД-14.

kvshurov.livejournal.com

Двигатель ПД-14 и семейство перспективных двигателей

Модификации двигателей, разрабатываемые в настоящее время

  • Семейство перспективных ТРДД для БСМС состоит из двигателей ПД-14, ПД-14А, ПД-14М, ПД-10;

  • ПД-14 - базовый ТРДД для самолета МС-21-300;

  • ПД-14А - дросселированный вариант ТРДД для самолета МС-21-200;

  • ПД-14М - форсированный вариант ТРДД для самолета МС-21-400;

  • ПД-10 - вариант с уменьшенной тягой до 10...11 тс для самолета SSJ‑NG.

Основные параметры двигателей (все параметры даны без учета потерь в воздухозаборнике и без отборов воздуха и мощности на самолетные нужды)

ПД-14А

ПД-14

ПД-14М

ПД-10

Тяга на взлетном режиме (Н = 0; М = 0), тс

12,5

14,0

15,6

10,9

Удельный расход топлива на крейсерском режиме, кг/кгс·ч

-(10-15) % от уровня современных двигателей аналогичного класса тяги и назначения

Диаметр вентилятора, мм

1900

1900

1900

1677

Сухая масса двигателя, кг

2870

2870

2970

2350

Схема двигателя

1+3+8-2+6

1+3+8-2+6

1+4+8-2+6

1+1+8-2+5

Так же на основании технологий, разработанных в рамках Проекта ПД-14, планируется создание промышленных ГТУ для производства ГПА и ГТЭС в классах мощности 8, 16 МВт.

Конкурентные преимущества по показателям экономической эффективности эксплуатации обеспечиваются следующими основными параметрическими и конструктивными особенностями по сравнению с аналогами-конкурентами:

  • Меньшие температуры на выходе из камеры сгорания являются важнейшим фактором уменьшения стоимости, снижения рисков в достижении заявленных показателей долговечности и надёжности двигателей самолетов с коротким полетным циклом.

  • Меньший диаметр вентилятора ПД-14 позволяет иметь объективное снижение массы двигателя и лобового сопротивления мотогондолы.

  • Оптимальные размеры внутреннего контура (газогенератора) облегчают решение проблемы относительно больших отборов воздуха из компрессора на различные нужды и снижают установочные потери тяги.

  • Достаточно высокая расчетная степень сжатия вентилятора (вследствие применения несколько меньшей степени двухконтурности) исключает необходимость применения регулируемого сопла наружного контура с неизбежным увеличением массы и сопротивления двигательной установки и снижает установочные потери тяги.

  • Проверенная в эксплуатации классическая безредукторная схема двигателя ПД-14 позволяет достичь требуемых показателей массы, ресурса, надежности и стоимости обслуживания.

Оптимальное сочетание умеренно высоких параметров цикла и проверенной схемы двигателя с прямым приводом вентилятора позволяет обеспечить снижение цены двигателя, затрат на обслуживание и ремонт, массы и лобового сопротивления двигательной установки и обеспечить преимущество двигателя ПД-14 по показателям экономической эффективности эксплуатации и стоимости жизненного цикла.

www.avid.ru

Начало испытаний авиадвигателя ПД-14 стало событием 2015 года. 10 фактов о двигателях

30 октября 2015 года начались испытания новейшего российского авиационного двигателя ПД-14 на летающей лаборатории Ил-76ЛЛ. Это событие исключительной важности. По достоинству оценить его значение помогут 10 любопытных фактов о турбореактивных двигателях вообще и о ПД-14 в частности.

Достижение человечестваТурбореактивный двигатель (ТРД) – одно из главных технических достижений человечества, которое можно поставить в один ряд с изобретением колеса, паруса, паровой машины, двигателя внутреннего сгорания, ракетного двигателя и атомного реактора. Именно благодаря ТРД наша планета вдруг стала маленькой и уютной. Любой человек может за считанные часы комфортно и безопасно добраться до самого отдаленного ее уголка.

По статистике лишь один полёт из 8 млн заканчивается аварией с гибелью людей. Даже если вы будете каждый день садиться на случайный рейс, вам понадобится 21 000 лет, чтобы погибнуть в авиакатастрофе. Согласно статистике, ходить пешком во много раз опаснее, чем летать. И всё это во многом благодаря потрясающей надёжности современных авиадвигателей.

Чудо техникиА ведь ТРД – крайне сложное устройство. В наиболее трудных условиях работает его турбина. Её важнейший элемент – лопатка, с помощью которой кинетическая энергия газового потока преобразуется в механическую энергию вращения. Одна лопатка, а их в каждой ступени авиационной турбины насчитывается около 70, развивает мощность, равную мощности двигателя автомобиля «Формулы-1», а при частоте вращения порядка 12 тыс. оборотов в минуту на неё действует центробежная сила, равная 18 тоннам, что равняется нагрузке на подвеску двухэтажного лондонского автобуса.

Схема двигателя ПД-14 © ОАО «Авиадвигатель»

Но и это еще не всё. Температура газа, с которым соприкасается лопатка, почти равна половине температуры на поверхности Солнца. Эта величина на 200 °С превышает температуру плавления интерметаллида (алюминида титана), из которого изготавливается лопатка. Представьте себе такую задачу: требуется не дать растаять кубику льда в печи, нагретой до 200 °С. Конструкторы умудряются решить проблему охлаждения лопатки с помощью внутренних воздушных каналов и специальных покрытий.

Причём, при сохранении всех прочностных характеристик, лопатки из интерметаллида титана намного легче, чем аналогичные, выполненные по используемой ранее технологии литья из никелевых сплавов.

Неудивительно, что одна лопатка стоит в восемь раз дороже серебра. Для создания только этой небольшой детали, которая помещается в ладони, необходимо разработать более десятка сложнейших технологий. И каждая из этих технологий оберегается как важнейшая государственная тайна.

Технологии ТРД важнее атомных секретовКроме отечественных компаний, только фирмы США (Pratt & Whitney, General Electric, Honeywell), Англии (Rolls-Royce) и Франции (Snecma) владеют технологиями полного цикла создания современных ТРД. То есть государств, производящих современные авиационные ТРД, меньше, чем стран, обладающих ядерным оружием или запускающих в космос спутники. Многолетние усилия Китая, к примеру, до сих пор так и не привели к успеху в этой области. Китайцы быстро скопировали и оснастили собственными системами российский истребитель Су-27, выпуская его под индексом J-11. Однако скопировать его двигатель АЛ-31Ф им так и не удалось, поэтому Китай до сих пор вынужден закупать этот уже давно не самый современный ТРД в России.

ПД-14 – первый отечественный авиадвигатель 5-го поколенияПрогресс в авиадвигателестроении характеризуется несколькими параметрами, но одним из главных считается температура газа перед турбиной. Переход к каждому новому поколению ТРД, а всего их насчитывают пять, характеризовался ростом этой температуры на 100–200 градусов. Так, температура газа у ТРД 1-го поколения, появившихся в конце 1940-х годов, не превышала 1150 °К, у 2-го поколения (1950-е гг.) этот показатель вырос до 1250 °К, в 3-м поколении (1960-е гг.) этот параметр поднялся до 1450 °К, у двигателей 4-го поколения (1970–1980 гг.) температура газа дошла до 1650 °К. Лопатки турбин двигателей 5-го поколения, первые образцы которых появились на Западе в середине 90-х, работают при температуре 1900 °К. В настоящее время в мире только 15% двигателей, находящихся в эксплуатации, относятся к 5-му поколению.

Одна лопатка авиационной турбины развивает мощность, равную мощности двигателя автомобиля «Формулы-1»

Увеличение температуры газа, а также новые конструктивные схемы, в первую очередь двухконтурность, позволили за 70 лет развития ТРД добиться впечатляющего прогресса. К примеру, отношение тяги двигателя к его массе увеличилось за это время в 5 раз и для современных моделей дошло до 10. Степень сжатия воздуха в компрессоре увеличилась в 10 раз: с 5 до 50, при этом число ступеней компрессора уменьшилось вдвое – в среднем с 20 до 10. Удельный расход топлива современных ТРД сократился вдвое по сравнению с двигателями 1-го поколения. Каждые 15 лет происходит удвоение объёма пассажирских перевозок в мире при почти неизменных совокупных затратах топлива мировым парком самолётов.

ПД-14 разрабатывался для российского среднемагистрального самолета МС-21 © ПАО «ОАК»

В настоящее время в России производится единственный гражданский авиадвигатель 4-го поколения – ПС-90. Если сравнивать с ним ПД-14, то у двух двигателей схожие массы (2950 кг у базовой версии ПС-90А и 2870 кг у ПД-14), габариты (диаметр вентилятора у обоих 1,9 м), степень сжатия (35,5 и 41) и взлётная тяга (16 и 14 тс).

При этом компрессор высокого давления ПД-14 состоит из 8 ступеней, а ПС-90 – из 13 при меньшей суммарной степени сжатия. Степень двухконтурности у ПД-14 вдвое выше (4,5 у ПС-90 и 8,5 у ПД-14) при том же диаметре вентилятора. В итоге удельный расход топлива в крейсерском полёте у ПД-14 упадёт, по предварительным оценкам, на 15% по сравнению с существующими двигателями: до 0,53–0,54 кг/(кгс·ч) против 0,595 кг/(кгс·ч) у ПС-90.

ПД-14 – первый авиадвигатель, созданный в России после распада СССР Когда Владимир Путин поздравлял российских специалистов с началом испытаний ПД-14, он сказал, что последний раз подобное событие в нашей стране произошло 29 лет назад. Скорее всего, имелось в виду 26 декабря 1986 года, когда состоялся первый полёт Ил-76ЛЛ по программе испытаний ПС-90А.

Советский Союз был великой авиационной державой. В 1980-е годы в СССР работали восемь мощнейших авиадвигательных ОКБ. Зачастую фирмы конкурировали друг с другом, поскольку существовала практика давать одно и то же задание двум ОКБ. Увы, времена изменились. После развала 1990-х годов пришлось собирать все отраслевые силы, чтобы осуществить проект создания современного двигателя. Собственно, формирование в 2008 году ОДК (Объединенной двигателестроительной корпорации), со многими предприятиями которой активно сотрудничает банк ВТБ, и имело целью создание организации, способной не только сохранить компетенции страны в газотурбостроении, но и конкурировать с ведущими фирмами мира.

Головным исполнителем работ по проекту ПД-14 является ОКБ «Авиадвигатель» (Пермь), которое, кстати, разрабатывало и ПС-90. Серийное производство организуется на Пермском моторном заводе, но детали и комплектующие будут изготавливаться по всей стране. В кооперации участвуют Уфимское моторостроительное производственное объединение (УМПО), НПО «Сатурн» (Рыбинск), НПЦГ «Салют» (Москва), «Металлист-Самара» и многие другие.

ПД-14 – двигатель для магистрального самолёта XXI векаОдним из самых удачных проектов в области гражданской авиации СССР был среднемагистральный самолёт Ту-154. Выпущенный в количестве 1026 шт., он долгие годы составлял основу парка «Аэрофлота». Увы, время идет, и этот трудяга уже не отвечает современным требованиям ни по экономичности, ни по экологии (шум и вредные выбросы). Главная слабость Ту-154 – двигатели 3-го поколения Д-30КУ с высоким удельным расходом топлива (0,69 кг/кгс·ч).

Государств, производящих современные авиационные ТРД, меньше, чем стран, обладающих ядерным оружием

Пришедший на смену Ту-154 среднемагистральный Ту-204 с двигателями 4-го поколения ПС-90 в условиях распада страны и свободного рынка не смог выдержать конкуренцию с зарубежными производителями даже в борьбе за отечественных авиаперевозчиков. Между тем сегмент среднемагистральных узкофюзеляжных самолётов, в котором господствуют Boeing-737 и Airbus 320 (только в 2015 году их было поставлено авиакомпаниям мира 986 шт.), – самый массовый, и присутствие на нём – необходимое условие сохранения отечественного гражданского самолётостроения. Таким образом, в начале 2000-х годов была выявлена острая необходимость создания конкурентоспособного ТРД нового поколения для среднемагистрального самолёта на 130–170 мест. Таким самолётом должен стать МС-21 (Магистральный самолет XXI века), разрабатываемый Объединенной авиастроительной корпорацией. Задача невероятно сложная, поскольку конкуренцию с Boeing и Airbus не выдержал не только Ту-204, но и ни один другой самолёт в мире. Именно под МС-21 и разрабатывается ПД-14. Удача в этом проекте будет сродни экономическому чуду, но подобные начинания – единственный способ для российской экономики слезть с нефтяной иглы.

ПД-14 – базовый проект для семейства двигателейБуквы «ПД» расшифровываются как перспективный двигатель, а число 14 – тяга в тонна-силах. ПД-14 – это базовый двигатель для семейства ТРД тягой от 8 до 18 тс. Бизнес-идея проекта состоит в том, что все эти двигатели создаются на основе унифицированного газогенератора высокой степени совершенства. Газогенератор – это сердце ТРД, которое состоит из компрессора высокого давления, камеры сгорания и турбины. Именно технологии изготовления этих узлов, прежде всего так называемой горячей части, являются критическими.

Семейство двигателей на базе ПД-14 позволит оснастить современными силовыми установками практически все российские самолёты: от ПД-7 для ближнемагистрального «Сухой Суперджет 100» до ПД-18, который можно установить на флагман российского самолётостроения – дальнемагистральный Ил-96. На базе газогенератора ПД-14 планируется разработать вертолётный двигатель ПД-10В для замены украинского Д-136 на самом большом в мире вертолёте Ми-26. Этот же двигатель можно использовать и на российско-китайском тяжёлом вертолёте, разработка которого уже началась. На базе газогенератора ПД-14 могут быть созданы и так необходимые России газоперекачивающие установки и газотурбинные электростанции мощностью от 8 до 16 МВт.

30 октября 2015 года начались испытания новейшего российского авиационного двигателя ПД-14 на летающей лаборатории Ил-76ЛЛ© Валентин Мазанов, RussianPlanet.net

ПД-14 – это 16 критических технологий Для ПД-14, при ведущей роли Центрального института авиационного моторостроения (ЦИАМ), головного НИИ отрасли и ОКБ «Авиадвигатель», было разработано 16 критических технологий: монокристаллические лопатки турбины высокого давления с перспективной системой охлаждения, работоспособные при температуре газа до 2000°К, пустотелая широкохордная лопатка вентилятора из титанового сплава, благодаря которой удалось повысить КПД вентиляторной ступени на 5% в сравнении с ПС-90, малоэмиссионная камера сгорания из интерметаллидного сплава, звукопоглощающие конструкции из композиционных материалов, керамические покрытия на деталях горячей части, полые лопатки турбины низкого давления и др.

ПД-14 и в дальнейшем будет совершенствоваться. На МАКС-2015 уже можно было увидеть созданный в ЦИАМ прототип широкохордной лопатки вентилятора из углепластика, масса которой составляет 65% от массы пустотелой титановой лопатки, применяемой сейчас. На стенде ЦИАМ можно было видеть и прототип редуктора, которым предполагается оснастить модификацию ПД-18Р. Редуктор позволит снизить обороты вентилятора, благодаря чему, не привязанный к оборотам турбины, он будет работать в более эффективном режиме. Предполагается поднять на 50°К и температуру газа перед турбиной. Это позволит увеличить тягу ПД-18Р до 20 тс, а удельный расход топлива сократить еще на 5%.

ПД-14 – это 20 новых материаловПри создании ПД-14 разработчики с самого начала сделали ставку на отечественные материалы. Было ясно, что российским компаниям ни при каких условиях не предоставят доступ к новым материалам зарубежного производства. Здесь ведущую роль сыграл Всероссийский институт авиационных материалов (ВИАМ), при участии которого для ПД-14 разработано порядка 20 новых материалов.

В 2015 году специалисты ВИАМ впервые в стране изготовили завихритель фронтового устройства камеры сгорания ПД-14 с применением отечественной металлопорошковой композиции.

Но создать материал – полдела. Иногда российские металлы превосходят по качеству зарубежные, но для их использования в гражданском авиадвигателе необходима сертификация по международным нормам. Иначе двигатель, как бы он ни был хорош, не допустят к полётам за пределами России. Правила тут очень строги, поскольку речь идёт о безопасности людей. То же самое относится и к процессу изготовления двигателя: предприятиям отрасли требуется сертификация по нормам Европейского агентства авиационной безопасности (ЕASA). Всё это заставит повысить культуру производства, а под новые технологии необходимо провести перевооружение отрасли. Сама разработка ПД-14 проходила по новой, цифровой технологии, благодаря чему уже 7-й экземпляр двигателя был собран в Перми по технологии серийного производства, в то время как раньше опытная партия изготовлялась в количестве до 35 экземпляров.

Разработка современного двигателя занимает в 1,5–2 раза больше времени, чем разработка самолёта

ПД-14 должен вытащить на новый уровень всю отрасль. Да что говорить, даже летающая лаборатория Ил-76ЛЛ после нескольких лет простоя нуждалась в дооснащении оборудованием. Нашлась работа и для уникальных стендов ЦИАМ, позволяющих на земле имитировать условия полёта. В целом же проект ПД-14 сохранит для России более 10 000 высококвалифицированных рабочих мест.

ПД-14 – первый отечественный двигатель, который напрямую конкурирует с западным аналогомРазработка современного двигателя занимает в 1,5–2 раза больше времени, чем разработка самолёта. С ситуацией, когда двигатель не успевает к началу испытаний самолёта, для которого он предназначен, авиастроители сталкиваются, увы, регулярно. Вот и выкатка первого экземпляра МС-21 состоится в 2016 году, а испытание ПД-14 только начались. Правда, в проекте с самого начала предусматривалась альтернатива: заказчики МС-21 могут выбирать между ПД-14 и PW1400G компании Pratt & Whitney. Именно с американским двигателем МС-21 и уйдёт в первый полёт, и именно с ним ПД-14 предстоит конкурировать за место под крылом.

Посетители у авиационного двигателя ПД-14 на Международном авиационно-космическом салоне МАКС - 2013 в Жуковском. Широкохордные пустотелые титановые лопатки вентилятора – одна из критических технологий ПД-14© Рамиль Ситдиков, РИА Новости

По сравнению с конкурентом, ПД-14 несколько уступает в экономичности, но зато он легче, имеет заметно меньший диаметр (1,9 м против 2,1), а значит, и меньшее сопротивление. И ещё одна особенность: российские специалисты сознательно пошли на некоторое упрощение конструкции. Базовый ПД-14 не использует редуктор в приводе вентилятора, а также не применяет регулируемое сопло внешнего контура, у него ниже температура газа перед турбиной, что упрощает достижение показателей надёжности и ресурса. Поэтому двигатель ПД-14 дешевле и, по предварительным оценкам, потребует меньших затрат на техническое обслуживание и ремонт. Кстати, в условиях падения цен на нефть именно более низкие эксплуатационные расходы, а не экономичность становятся схемообразующим фактором и главным конкурентным преимуществом авиадвигателя. В целом прямые эксплуатационные расходы МС-21 с ПД-14 могут быть на 2,5% ниже, чем у версии с американским двигателем.

Семейство перспективных ТРДД для семейства магистральных самолётов состоит из двигателей ПД-14, ПД-14А, ПД-14М и ПД-10:

  • ПД-14 - базовый ТРДД для самолета МС-21-300;
  • ПД-14А - дросселированный вариант ТРДД для самолета МС-21-200;
  • ПД-14М - форсированный вариант ТРДД для самолета МС-21-400;
  • ПД-10 - вариант с уменьшенной тягой до 10...11 тс для самолета SSJ‑NG.
Основные параметры двигателей(все параметры даны без учёта потерь в воздухозаборнике и без отборов воздуха и мощности на самолётные нужды) ПД-14А ПД-14 ПД-14М ПД-10
Тяга на взлетном режиме (Н = 0; М = 0), тс 12,5 14,0 15,6 10,9
Удельный расход топлива на крейсерском режиме, кг/кгс·ч -(10-15) % от уровня современных двигателей аналогичного класса тяги и назначения
Диаметр вентилятора, мм 1900 1900 1900 1677
Сухая масса двигателя, кг 2870 2870 2970 2350
Схема двигателя 1+3+8-2+6 1+3+8-2+6 1+4+8-2+6 1+1+8-2+5

На 1 июля 2016 года заказано 175 МС-21, из них 35 – с двигателем ПД-14.

Источники:

  • ВТБ - Высокие технологии (http://vtbrussia.ru/tech/pd-14-dvigatel-progressa/)
  • Союз авиапроизводителей России (http://www.aviationunion.ru/news_second.php?new=4182)
  • Сайт завода АО "Авиадвигатель" (http://www.avid.ru/pd14/)
  • Фото: ПАО «ОАК», АО «Авиадвигатель», РИА Новости
Загрузка...

aviation21.ru

14 - двигатель. Турбовентиляторный двигатель: новые разработки

Совсем недавно в рамках лаборатории ИЛ-76ЛЛ начались испытания, где тестировался ПД-14 — двигатель, который считают важнейшей разработкой в отечественной гражданской авиации за тридцать лет. Почему? Этому есть много причин.

Общее представление

ПД-14 — двигатель пятого поколения среди турбореактивных моторов. Он представляет собой сложную конструкцию, где реализованы инновационные инженерные решения. Взять хотя бы лопатку турбины, вращающуюся с частотой в двенадцать тысяч оборотов в минуту. При этом на нее действует центробежная сила в восемнадцать тонн. Таких лопаток в турбине насчитывается до семидесяти.

Как все начиналось

Идея создания двигателя появилась в начале двухтысячных в ОАО «Авиадвигатель». Длительный период изучались разработки лидеров мира по производству двигателей на тот момент, анализировались как авиаперевозки, так и используемые самолеты. В то время российский рынок заполонили иностранные производители всего и вся. Это сильно ударило и по отечественному двигателестроению. Поэтому перед разработчиками стояла непростая задача не только дойти до уровня мировых лидеров, но и превзойти имеющиеся технологии, а также сделать отечественную авиатехнику конкурентоспособной по экологическим, ценовым и экономичным показателям. Понятно, что реализовать такую задачу было совсем нелегко.

Поэтому было решено задействовать все преимущества отечественных предприятий и научно-исследовательских институтов по производству двигателей.

Главная идея проекта заключалась в создании современного газового генератора, обладающего такими параметрами, на основе которых можно было строить двигатели разных мощностей. Их предполагалось устанавливать на разных летательных аппаратах, а также устройствах наземного назначения — на электрических станциях и установках для перекачки газа. Газогенератор является самым непростым узлом мотора с высоким напряжением. Именно благодаря его унификации решалась задача в обеспечении серийного производства для различных агрегатов. В то же время существенно уменьшалась себестоимость каждой из будущих моделей. Все материалы и технологии при проектировании не импортировались (да и не могли, даже если бы такое желание возникло, так как данные являются тайными и не разглашаются), а производились в России.

О соблюдении конфиденциальности

Здесь следует иметь в виду, что помимо российских компаний, технологии по созданию турбореактивных двигателей новых поколений имеются лишь у США, Франции и Великобритании. Получается, что ими владеет меньшее количество стран по сравнению с теми, которые обладают ядерным оружием или умеют запускать спутники в космическое пространство. Китай, например, уже много лет пытается преуспеть в этой области. Ему без труда удалось скопировать отечественный СУ-27, но вот двигатель АЛ-31Ф так и остался недоступным. Поэтому эта страна до сих пор вынуждена покупать в России уже совсем не современный мотор. Вот почему разработки в этой отрасли оберегаются государством.

Кооперация разработчиков и производителей

Все участники, которые планировали реализовывать проект, поддержали идею. В 2006 году ими был подписан протокол о совместной реализации, ставший впоследствии основой будущей кооперации.

Инициатива обрела и правительственную поддержку. Проект получил название «ПД-14». Двигатель стали разрабатывать в ОАО «Авиадвигатель», а производить в ОАО «УК ОДК». Помимо главных компаний, в реализации принимали участие ряд ведущих предприятий авиационного двигателестроения, отраслевые институты и институты РАН.

Синхронное производство

ПД-14 — двигатель двухконтурный, относящийся к турбореактивным, имеет тягу 14 тонн. Его предполагается устанавливать в самолеты МС-21 (они рассчитаны на число пассажиров от ста тридцати до ста восьмидесяти), которые будут введены в эксплуатацию с 2017 года. Поэтому двигатель самолета создают синхронно с самим МС-21.

При реализации проекта используются так называемые Gate-технологии. В конце каждого этапа проводится соответствующая экспертиза, в которой принимают участие специалисты - представители всех организаций. Благодаря такому режиму при необходимости удается вовремя вносить коррективы и исключить возможные ошибки.

Что нового будет в двигателе

Основа закладывалась на классических решениях, которые доказали свою надежность при разработке ПД-14. Двигатель в то же время содержит и современные конструкторские технологии. Используются, например, никелевые и титановые суперсплавы, которые обеспечивают достижение нужных параметров. Таким образом, российскими разработчиками был сделан качественный рывок на новый уровень, где двигатель самолета улучшился по всем основным показателям.

Так, расход горючего снизился на двенадцать-шестнадцать процентов. Внедрение полимерных композиционных материалов улучшило шумоглушение и уменьшило массу двигателя. Новых наименований материалов насчитывается порядка двадцати.

Высокое качество изготовления достигается за счет шестнадцати главных используемых технологий. Раньше в двигателестроении их не применяли. Поэтому сейчас идет их активное освоение и внедрение в производство.

В 2012 году с целью демонстрации двигателя с заявленными технологическими и конструктивными решениями, успешно прошел стендовые испытания двигатель-демонстратор технологий. Отличные результаты были достигнуты по акустике, эмиссии и термодинамике.

Чтобы двигатель ПД-14 характеристики и годность к полетам свою доказал, используется специальная квалификация применяемых материалов. В банке данных, куда заносятся материалы, содержится вся информация об уровне конструктивной прочности, который они имеют. Все материалы испытываются в специальных современных лабораториях.

Цели проекта

Разработка двигателей сопровождается следующими целями:

  • снижение себестоимости производства;
  • сокращение затрат на техобслуживание и ремонт;
  • гарантированная стабильная работа механизма;
  • снижение расхода топлива;
  • уменьшение массы;
  • сокращение шума, эмиссии вредных веществ.

Вместе с работой над двигателем, создается удобная система обслуживания агрегатов после продажи. Она включает в себя, помимо оптимального ремонтно-технического обслуживания, логистические схемы, гарантии и сервис. Это особенно важно в связи с тем, что эта система почти отсутствует, так как самолетов отечественного производства эксплуатируется немного.

Гарантия успеха

В 2013 году была подана заявка на получение сертификата для ПД-14, а в конце 2015 года уже были проведены испытания.

Благодаря тому, что проект реализуется целым рядом предприятий и научно-исследовательских институтов, обеспечивается эффективное использование средств бюджета. Вложения как в разработку, так и в реальное внедрение проекта, позволяет преодолеть то отставание, которое наблюдалось в отечественной авиационной промышленности и заложить фундамент для его последующего развития.

Освоение новых технологий теперь становится особенно эффективным, так как собственная практика поможет предупреждать всевозможные ошибки. Все разработки внедряются в заведомо успешный проект. Все участники проекта продолжают получать прибыль за счет других заказов, что сводит на нет риск потерь.

Единственным отечественным двигателем, которым оснащаются авиалайнеры в России сегодня, является ПС-90А. Все остальные летательные аппараты имеют иностранные агрегаты.

Разработчики проекта планируют перевести в перспективе все российские самолеты на отечественные новые моторы.

ПС-90А — это турбовентиляторный двигатель. Турбореактивный вид ПД-14 решил проблемы, имевшиеся ранее в реактивных двигателях, что мешало их использовать в гражданской авиации. Основные проблемы заключались в огромном расходе топлива и сильном шуме. В новом проекте эти и другие препятствия были преодолены, благодаря чему двигатели теперь будут применяться для гражданских самолетов.

В семейство двигателей ПД-14 входят и агрегаты ПД-7, имеющие тягу до 7900 килограмм, и ПД-10 с тягой до 9900 килограмм. Самая мощная модификация ПД-14М способна увеличить дальность полета как с максимальной нагрузкой, так и без нее. И это будет реализовано со сниженным расходом топлива от десяти до четырнадцати процентов по сравнению с тем, который потребляет в настоящее время турбовентиляторный двигатель.

Спрос на внутреннем и внешнем рынке

Разработчики полностью уверены в перспективе насыщения двигателями ПД-14 внутреннего рынка. Среди пяти конкурирующих авиалайнеров, функционирующих на отечественном рынке, МС-21 имеет существенное преимущество в количестве пассажиров. Он способен перевозить двести двенадцать человек. Сравним: Боинг-737 перевозит лишь 189 пассажиров, а Бомбардир-CS300 – всего 135. Помимо этого, увеличатся объемы для багажа, проход и кресла. Это облегчит и ускорит процедуру загрузки и выгрузки пассажиров.

Другим существенным преимуществом является невысокая стоимость самолета. Если отечественный самолет, имеющий внутри лучший двигатель, стоит семьдесят восемь миллионов долларов, то Боинг-737, например, обходится для компаний почти в сто семь миллионов, а Бомбардир-CS300 — в восемьдесят миллионов.

Что касается перспектив выхода МС-21 на международный рынок, то здесь пока будущее представляется туманным. Единственным реальным зарубежным покупателем является малайзийская компания, уже заказавшая двадцать пять самолетов.

Среди отечественных компаний самолет заказали:

  • «Аэрофлот» - пятьдесят штук;
  • «ВЭБ-лизинг» — тридцать;
  • «Ильюшин Финанс» - двадцать восемь;
  • «Сбербанк Лизинг» — двадцать;
  • «ИрАэро» — десять.

То, что компании и наши, и иностранные пока не стремятся приобретать МС-21 может быть связано еще с неоконченными испытаниями. Помимо этого, существует проблема отсутствия развитой системы обслуживания после продажи авиалайнеров.

Тем не менее, президент РФ Владимир Владимирович Путин на своей пресс-конференции в конце 2015 года назвал завершение проекта ПД-14 самым важным событием в российском двигателестроении с восьмидесятых годов двадцатого столетия и выразил уверенность, что наши новые двигатели превзойдут зарубежные аналоги.

Поэтому есть все основания предсказывать успех отечественному двигателе- и авиастроению.

fb.ru