Ружейные стволы. Технология изготовления. Оружейной стали


Путеводитель по оружейным металлам

Ресиверы винтовок которые должны обладать большой прочностью, также требуют много операций по обработке. Очень не просто найти сталь, которая будет служить основой для ресивера, но не будет быстро изнашивать режущие инструменты.

Некоторые оружейные статьи и описания бросаются всяческими терминологиями и марками металлов, о которых мы смутно что понимаем. Для освещения этой темы начнем с небольшой статьи.

Что такое сталь? И почему она важна в оружейном строении? Все просто, сталь это чугун с таким количеством углерода, который позволит его закаливание - но не слишком много, так как это делает будущий сплав хрупким. У стали нет пор, она состоит из кристаллов ( теперь если вы будете выбирать смазку по описанию производителей при каждой фразе " попадает в поры металла " вас будет немного дергать ). Форма, размер и положение этих кристаллов определяют их механические параметры. Кристаллы стали имеют размер и формы, а также имеют свои названия аустенит, мартенсит, цементит (карбид железа) и феррит.

Сталь может быть в смеси с другими металлами как никель, хром и вольфрам - в том числе и не с металлическими элементами как молибден, сера и кремний. Эти добавки в сплаве дают качественные характеристики, как простоту машинной обработки, сопротивляемость коррозии, защита от истирания или прочность на растяжение без хрупкости, все это будет указано в марке стали.

Ассоциация Инженеров Автомобилестроения использует простую систему обозначения, которую вы можете встретить в статьях об оружии; номера 1060, 4140 или 5150 будут давать информацию что в них содержится и в каких количествах (по таблицам АИА).

Первая цифра в марке - углерод, никель, хром и так далее. Следующие три цифры дают понять, сколько чего в них. В частности, возьмем примеры классических сталей для стволов AR платформ - 4140 против 4150.

Сталь 4140 также известна Артиллерийская сталь, была одной из ранних сплавов содержащих много элементов, использовалась в 1920 году для рам в авиастроении и автомобильных валов, помимо оружейного производства. Эта сталь имеет около 1 процента хрома; 0.25 процента молибдена; 0.4 процента углерода, 1 процент марганца, около 0.2% кремния и не больше чем 0.035 процента фосфора, как и не больше 0.04% серы. Все остальное это 94.25% остается чугуну.

Какое большое отличие между сталью 4140 и 4150? 4150 имеет 0,5% углерода в составе. Этот лишний 0,1% дает марке 4150 большую жесткость, которая делает ее более трудно обрабатываемой, но армия США желала эту износостойкость и решила что цена, оправдана.

Что-то вроде спусковой скобы не обязательно делать из высокопрочного сплава стали. Средняя сталь, легкая в обработке и относительно недорогая, отлично справится.

Большинство производителей винтовок осознают, что потребитель не готов к дополнительным тратам и использование стали 4140 для них оправданно. Проще говоря, если винтовка в калибре 30-06 имеет ствол, который даст возможность произвести 5000 точных выстрелов - что примерно три жизни среднестатистической охотничьей винтовки - кто готов заплатить двойную цену что бы продлить ее до 7500 выстрелов?

Однако стандарты SAE ( Ассоциация Инженеров Автомобилестроения ) только частично отображают всю ситуацию. Как и на каких температурах добавляются компоненты в сталь, тоже может менять свойства получаемого сплава. Для примера, болты затвора для AR-15 изготовлены из так называемой марки Carpenter 158. Это продукт компании Carpenter и вы не найдете ее в таблице SAE ( как скорее всего не найдете 3310 ). Это производственная тайна, запатентованная сталь, и если вы хотите купить ее, вы найдете ее только у производства Carpenter.

Есть ли стали, которые будут работать также и даже лучше чем Carpenter 158 на болтах AR? Скорее всего да. Этот сплав технологический продукт 1960 года, и мы многое узнали спустя столько времени, но эта сталь включена в сертифицированный список mil-spec по военным стандартам.

А что о нержавеющей стали? Разработанная до Первой Мировой Войны, нержавейка применяемая в оружии на самом деле не нержавеющая сталь. Она имеет очень большое сопротивление к коррозии, однако - не обладает таким количеством хрома, так как он на поверхности вступает в реакцию с кислородом, чтобы получился независимый слой оксида хрома, который защищает металл от окисления.

Нержавеющие стали имеют свое предназначение, в основном они 400 марок, и 416 сталь очень популярна среди производителей, так как легко обрабатывается, как и углеродная сталь.

Алюминий используется в двух сплавах: 7075 и 6061. Алюминий марки 6061 часто называют " авиационным алюминием " он содержит небольшое количество кремния, меди, марганца, молибдена и цинка. Алюминий 7075 намного более прочный сплав и имеет большее количество меди, марганца, хрома и цинка.

Даже, скорее всего слишком прочный чем нужно, но причина использования 7075 над 6061 это производство ресиверов в платформах AR, в частности речь о сопротивлению к коррозии. Ранние тестирования в Юго-Восточной Азии показали, что человеческий пот, в сочетании с высокими температурами и влажностью джунглей, просто съедает 6061 алюминий. Когда 7075 безразличен к ним.

Закаленные болты затвора, очень-очень прочные, и сложны в машинной обработке. Некоторые фирмы изготавливают их цельными, но большинство производств поняли как делать прочные затворы их из двух частей.

Алюминий слишком мягкий чтобы использовать его просто так. Чтобы упрочнить его свойство, производители используют процесс известный как анодировка ( анодирование ). Они скидывают много алюминиевых деталей в емкость с кислым электролитом и проводят электричество через него. В результате чего, ускоряют формирование природных оксидов которые упрочняют поверхность.

Оксиды имеют поры, поэтому часто используют изоляционный материал. По стандартам mil-spec для этого используют ацетат никеля, черный цвет получается от использования красителя ( естественный цвет после анодировки остается таким же "алюминиевым" ).

Что это все значит для стрелков? Ну, теперь у вас есть больше представлений, о чем оружейные компании (и оружейные магазины) говорят, когда дают характеристики металла при описании оружия и другой продукции.

Часто встречаемые оружейные металлы

Углеродистые стали

Сталь 1020 и 1520 = Часто встречаемая сталь, обычная холоднокатаная сталь. Вы ее найдете на спусковых скобах, крышках магазинов, механических прицелах, антабках и других стальных аксессуарах.

Сталь 4140 = Артиллерийская сталь или хромомолибденовая сталь, имеет 0,4% углерода и по настоящему прочная одновременно являясь эффективной по затратам в машинной обработке. Вы найдете ее на стволах, ресиверов затвора и аксессуарах подверженных большому стрессу как например, дульные модераторы и т.д.

Сталь 4150 = Схожая с артиллерийской сталью, но с содержанием углерода поднятым до 0,5 процента. 4150 лучше в использовании при серьезных нагрузках, и чаще всего можно найти в стволах AR по стандартам mil-spec.

Сталь 41V45 = Хромомолибденовый вариант, он имеет небольшой процент ванадия. Этот сплав используется в стволах получаемых холодной ковкой.

Сталь 8620 = Это много компонентная сталь, имеет в составе никель, хром, молибден, с 0,2% углерода. Литые ресиверы изготавливаются из этого сплава так как она очень хорошо заполняет матрицы ( формы ), чистый в обработке и в конце получается очень-очень прочной сталью.

Нержавеющие стали

Сталь 316 = Также известная как нержавейка Морской Пехоты, хорошо сопротивляется коррозии из-за добавок молибдена не легко закаляется. Используется для спусковых скоб и крышек магазина.

Сталь 17-4 = Сплав с 17% хрома и 4% никеля. 17-4 без всяких сложностей закаляется и используется в стволах, болтах затвора и ресиверах.

Алюминиевые сплавы

Алюминий 6061 = Авиационный алюминий, избранный за свою легкость и простоту обработки в сложных деталях. Крышки магазина на охотничьих винтовках, кольца кронштейны для прицелов, спусковые скобы, буферные трубки на AR-15 ( трубка на прикладе ) изготавливаются из алюминия 6061.

Алюминий 7075 = Намного прочнее 6061, этот сплав используется в верхних и нижних ресиверах AR-15, некоторые бренды работающие по стандартам mil-spec изготавливают буферные трубки и некоторые цевья. В mil-spec известен как 7057-T6; последняя часть отображает способ термической обработки, который сплав получает при формировании.

maksim-guns.ru

Материал стволов и его механические свойства | Настольная книга охотника-спортсмена. Книга первая | Библиотека

 

Стволы современных охотничьих ружей изготовляются из прочной, упругой и вязкой ствольной стали.

Около полувека назад только немногие заводы выделывали хорошую ствольную сталь. В то время лучшим материалом для стволов дробового ружья считался Дамаск, т. е. различным образом перекрученная и прокованная смесь стальных прутьев с различным содержанием углерода.

Для этого нагревали пачку железных (Точнее говоря, ствольных прутьев с малым процентом содержания углерода.)и стальных прутьев, связанных в шахматном порядке, и постепенно из пачки таких прутьев выковывали сравнительно тонкую полосу.

Затем эти полосы перекручивали в разные стороны (одну влево, другую вправо), вокруг продольной оси полос и сваривали их в ленты.

Прокованные таким образом ленты нагревали, а затем уже сваривали из них ствольные трубки.

Чем в большее число витков были скручены полосы и чем больше было взято полос для изготовления ленты, тем мельче и красивее получался рисунок Дамаска.

Различали дамаски однополосный, двухполосный, трехполосный, четырехполосный и даже букетный, т, е. шестиполосный, так называемый "розовый" Дамаск.

В начале XX века, по мере развития металлургической промышленности и технологии изготовления высокосортных сталей, дамаск как ствольный материал для дробовых ружей был быстро вытеснен качественной сталью.

Состав ствольных сталей довольно сложен. Кроме главной примеси к железу - углерода, который придает стали прочность, в состав современных ствольных сталей добавляют марганец, кремний, хром, никель, ванадий и молибден. Все эти элементы повышают механическую и химическую прочность стали. Например, добавление даже небольшого процента хрома и никеля резко повышает стойкость стали к оржав-лению.

В современных ствольных сталях имеется большое количество хрома и никеля, что делает их почти не окисляемыми под воздействием взрывчатого разложения пороха и капсюльного состава даже в присутствии влаги.

Сера и фосфор - очень вредные примеси. Они делают сталь хрупкой и ломкой. Сера к тому же делает сталь красноломкой, т. е. способствует образованию трещин при обработке в горячем состоянии. Фосфор придает стали холоднолом-кость, особенно при низких температурах. Поэтому чем меньше примесей серы и фосфора в ствольной стали, тем эта сталь лучше.

Наша ствольная сталь (табл. 4) имеет меньше примесей серы и фосфора, чем сталь Крупна ("три кольца").

Несмотря на положительные стороны нержавеющих сталей, они имеют и некоторые недостатки. В частности, их трудно окрашивать способами ржавого лака (воронить) из-за наличия в их составе таких элементов, как хром и никель. Кроме того, их трудно паять. Этим и объясняется, что у двуствольных ружей, изготовленных из сталей нироста и антикорро после стрельбы иногда отходят прицельные планки.

Таблица 4

Химический состав ствольных сталей (по материалам С. А. Бутурлина)

Наименование и марка стали

Химический состав в процентах

Ижевская мартеновская № б

Углевод

Марганец

Кремний

Хром

Никель

Фосфор

Сера

0, 42—0, 47

0, 50—0, 70

0, 20—0, 30

-

-

До 0, 05

До 0, 04

То же, № 6 1/2

0, 48—0, 55

0, 50—0, 70

0, 20—0, 30

-

-

До 0, 05

До 0, 04

50 А ствольная **

0, 46—0, 53

0, 50—0, 80

0, 17—0, 37

0, 30

0, 30

Не более 0, 035

Не более 0, 030

Круппа специальная ***.

0, 61

0, 65

0, 434

-

-

Не более 0, 04

Не более 0, 04

Нержавеющая антинит Белера

0, 177

0, 49

0, 299

-

8, 51

-

-

Нержавеющая антикорро завода Польдигютте

0, 145

0, 50

0, 45

-

7, 78

-

-

** По данным, опубликованным в книге М. Г. Арефьева и Л. И. Карпова "Производство стволов стрелкового оружия" (Оборонгиз, 1945).

*** По всей вероятности, марка "три кольца".

У наших охотников одно время было увлечение ствольной сталью Круппа, марки "три кольца". Эта сталь, несмотря на свои некоторые хорошие механические свойства, сильно подвержена оржавлению и имеет небольшую вязкость, несмотря на большое сопротивление разрыву.

В табл. 4 приведен химический состав некоторых ствольных сталей, а в табл. 5 - механические свойства ствольных материалов.

Таблица 5

Механические свойства ствольных материалов

Наименование и марка стали

Временное Сопротивление на разрыв, кг/мм2

Предел. текучести, кг /мм2

Относительное удлинение, %

Сужение площади поперечного сечения%

Разные дамаски...

40—48

22-37

14—19

-

Берданки (4, 2-линейные винтовки)

47—63

23—28(31)

8—16

48—68

Трехлинейки (7, 62 мм винтовки) закаленные..

82, 5

60

12, 7

44, 8

То же, отожженные..

65

45, 2

20

52, 6

Круппа лучшая ствольная (прямо от ствола)..

97, 3

56, 9

10, 7

То же, отожженная..

86, 3

46, 9

14, 3

Ижевская мартеновская для дробовика (по довоенным испытаниям Тульского оружейного завода) не отожженная

79, 2

56

17, 2

60

То же, отожженная..

62

40

24, 5

60

Ижевская мартеновская № 6 (по данным Ижевского завода, 1925 г. )..

60—65

28—38

16

40

То же, № б1 1/2

65-70

29—39

15

40

50А ствольная после отжига или нормализации

63—80

34

13

40

50А ствольная после закалки и отпуска *

80—100

55

8

40

Винчестера обыкновенная

41, 6

27, 7

-

-

Винчестера никелевая для сильных винтовок.

76, 2

62, 3

Белера блитц (по опытам ТОЗ)

66

46

18

61

Белера антинит нержавеющая (по опытам ТОЗ)

97

82

15

49

Круппа нержавеющая V1M (данные фирмы)..

80

60

14

50

Круппа нержавеющая, 5М (данные фирмы)...

70

65

15

60

* Данные по стали 50А ствольной взяты из книги М. Г. Арефьева и Л. И. Карпова "Производства стволов стрелкового оружия" (Оборонгиз, 1945). 

При рассмотрении этой таблицы нужно иметь в виду следующее: а) чем больше сопротивление разрыву и чем выше предел текучести в килограммах на квадратный миллиметр, тем прочнее, крепче сталь; б) чем выше процент относительного удлинения, тем вязче сталь. А это означает, что металл будет больше вытягиваться при разрыве и даст меньше осколков.

Основные требования, предъявляемые к стволу огнестрельного оружия, сводятся к его прочности и достаточной живучести.

Стволы, воспринимая при выстреле значительное по величине и динамичное по характеру действия давление пороховых газов, не должны иметь остаточных деформаций. Поэтому они изготовляются из стали с достаточно высоким пределом текучести.

Так как не исключены случаи повышения давления пороховых газов (увеличение порохового заряда, застревание инородного тела в канале ствола: попавшая в ствол сырая земля, примерзший снег, выпавший из патрона дробовой пыж, выкатившиеся и приставшие к смазке дробинки), материал стволов должен полностью устранять возможность хрупких разрывов. Вот почему для изготовления стволов охотничьих ружей применяются ствольные стали с достаточно высокими характеристиками пластичности и ударной вязкости. 

 

 

 

piterhunt.ru

Нож из чудо-стали | Ножи со всего мира

Продолжая развивать тематику ножевых мифов, хочется упомянуть о так называемой "оружейной стали". Сей термин накрепко привязался к очередной байке о ножах, а именно к существованию некого универсального материала из которого куются все самые хорошие ножи на свете. Этот материал обладает чуть ли не магическими свойствами (со слов рассказчиков), ножи из него никогда не тупятся, не ржавеют, обладают запасом сверхпрочности и, конечно же, играючи разрубают любые преграды, будь то железные трубы или кирпичи. Правда оружие из настоящей оружейной стали - это большая редкость. Поскольку рецепты ее изготовления канули в небытие много веков назад. На фоне этого поверья становится интересно какими еще нанотехнологиями обладали наши предки и куда все это так неожиданно исчезло.

Не думаю, что ученые современности настолько отстали от наших предков, что никак не могут воспроизвести рецепт этой чудесной стали. Логичнее предположить, что универсального материала просто напросто не существует. Зато наличествует ряд сталей, хорошо справляющихся, с определенными задачами. К примеру сталь Н-1 не ржавеет, но при этом режущие свойства ножа из этой стали оставляют желать лучшего. Соответственно для достижения других целей используют иные химические составы сплавов с разным содержанием хрома (отвечающим за восприимчивость к ржавчине), углерода (от него зависит твердость клинка), молибдена и т.д. Не создала еще наша наука ту волшебную оружейную сталь, которая вберет в себя все лучшее от всех сплавов, и вряд ли в ближайшее время создаст. Ножи делаются из разных марок стали - RWL-34, 440C, AUS-8, AEB-L и т.п. Заучивать их составы и свойства - бессмысленно, однако перед покупкой ножа стоит освежить в памяти основные характеристики и на их основе подобрать себе подходящий клинок.

Далее обратимся к "ножу из турбинной лопатки" и всем его сопутствующим товарищам, выпиленным из танковой брони или ствола пулемета. Эта отдельная категория БОЕВЫХ ножей. Ну раз от такой серьезной техники оттяпали кусок, то нож точно будет боевым. Более того, будучи истинным боевым ножом, противников он уничтожает практически без участия хозяина. Определенно для создания танковой брони используются прочные материалы, однако это не является гарантией того, что нож будет хорошим. Я очень хочу посмотреть на процесс распиливания танка на ножи. Жаль никто не хочет демонстрировать сие действие, и дальше разговоров на форуме процесс не сдвигается.

Продолжая поиск чудо-стали мы оказываемся в области восточных мифов и легенд. Тут все сводится к тому, что японские клинки и стали находятся вне конкуренции, и всех страждущих прикоснутся к вершине оружейного искусства отправляют в Страну Восходящего Солнца. Якобы в островном, изолированном на протяжении многих веков, государстве хранятся секреты создания той самой оружейной стали. Если верить этим сказаниям, то выходит, что катаной можно чуть ли не дуло у танка отрубить и рыцаря в полном латном доспехе нашинковать в мелкую стружку.

Да, японские мастера действительно верны своим традициям, для них катана не просто оружие - а символ, произведение искусства. Однако, это не значит, что байки о идеальной стали имеют под собой почву. Можно исходить из того, что в те самые древние времена в Японии был дефицит месторождений руды, и железо ценилось весьма высоко. А значит его не использовали массово для изготовления доспехов и всего к ним комплектующего. Из чего, в свою очередь, можно прийти к следующему умозаключению : Японским мастерам-оружейника не приходилось решать задачу по разработке меча, способного эти самые доспехи разрубать. В то время как Европейские государства, напротив, соревновались между собой в том, чьи рыцари окажутся более "законсервированными". Логичнее предположить, что шансы изобрести чудо-сталь, у европейцев были повыше. Хотя, как  уже говорилось выше, этого не произошло.

Оружейная сталь - еще один миф. Не поддавайтесь предрассудкам :)

Автор: Lis

steel-knife.ru

Всё о холодном оружии: материал клинка

Всякий нормальный человек с юных лет знает, что ножи изготавливают из железа, точнее, — из сплава железа с углеродом, именуемого сталью. Чем выше процентное содержание углерода в сплаве, тем прочнее и тверже (после термообработки) будет наша сталь. Однако человечество не всегда полагалось на этот полезный материал, умудрившись прожить необозримые отрезки своей истории с каменными, а позднее с бронзовыми клинками в руках.

Тот, кто думает, будто каменные ножи были настолько примитивными и убогими, что достойны лишь осмеяния с высот нашего атомного века, сам достоин восклицания из старого фильма: «Неправда ваша, дяденька!». На самом деле каменные инструменты кое в чем дадут сто очков вперед самым современным материалам, проявляя волшебные свойства в неожиданных областях. Этим они обязаны высочайшей твердости, в силу чего режущая кромка попросту не способна тупиться, сохраняя долгое (по сути, неограниченное) время степень остроты, недоступную металлу. Ясное дело, в ход идут не булыжники, и для приготовления качественного каменного ножа нам придется обзавестись чем-нибудь стеклоподобным.

Лучшим сырьем считались вулканическое стекло (обсидиан) и кремень. Экспериментально доказано, что они в состоянии давать кромку молекулярной толщины, то есть острота ее абсолютна.

Хирургические операции с использованием каменных лезвий, зажатых в специальные рукоятки, увенчались блистательным триумфом. Кожа и плоть расступаются, будто сами по себе, почти без боли, а нанесенные раны зарастают гораздо быстрее, образуя тонкие малозаметные рубцы.

Неудивительно, что современные оружейники активно экспериментируют с керамическими клинками различного состава. Как правило, это карбиды, обладающие чрезвычайно высокой твердостью.

Существенным недостатком камня является его хрупкость, впрочем, нисколько не докучающая при нормальной эксплуатации ножа. Конечно, если вам взбредет в голову метать клинок из циркона в дубовый пень, можете распрощаться с ним заранее. Именно поэтому каменные ножи никогда не бывают достаточно длинными, а история так и не узнала каменных мечей.

Бронзовые сплавы предстают в изрядном многообразии, однако достижения современной металлургии нас не волнуют. Та бронза, которой пользовались в одноименную эпоху, — простой двухкомпонентный сплав необходимых частей меди и олова. Соответственно, такие бронзы называются оловянистыми. Изменяя процентный состав, можно менять механические свойства конечного продукта. В целом зависимость такова: чем больше меди, тем мягче бронза, и наоборот.

Следует подчеркнуть, что древние мастера проникли в немыслимые тонкости своего ремесла и пользовались технологическими секретами, неизвестными (вернее, утерянными) ныне. В отличие от процесса изготовления стального оружия бронзовое отливалось в готовые формы, сразу приобретая конечные очертания. Но сражаться такими мечами, как и резать ножами, было рановато — до того требовалось умело и неторопливо проковать весь клинок, а особенно режущие кромки, уплотнив кристаллическую структуру металла, придав ему дополнительную жесткость.

А хитроумные во все века китайцы умудрялись отливать бронзовые мечи с различным содержанием олова вдоль кромок и по центру полосы. Соответственно, основное «тело» клинка получалось более мягким, не склонным к образованию трещин, а лезвия — немного хрупкими, зато твердыми.

Лучшие из известных на сегодняшний день бронзовых изделий мало в чем уступают стальным (если не брать для сравнения действительно уникальные экземпляры), а уж порезано и поколото сыновей и дочерей рода людского ими несчетно. На протяжении длительного исторического периода бронзовое и стальное оружие конкурировало друг с другом, и совершенная технология бронзы часто посрамляла архаичную технологию железа. Пусть время и прогресс взяли свое, но тот, кто рискнет считать бронзовое оружие чем-то потешным, будет катастрофически не прав.

Завершая тему, предлагаю взглянуть на типичный большой кинжал (или короткий меч), датируемый IV-V веком до н.э. Здесь также прекрасно виден оригинальный способ соединения клинка с рукояткой, характерный именно для бронзовых изделий.

Сталью, как сказано выше, именуется сплав железа и углерода. Если углерода свыше 2%, то речь идет о чугуне, хотя в его состав входит еще масса различных примесей наподобие серы, кремния и так далее. Вообще-то граница, отделяющая чугун от стали, не может быть обозначена четкой линией, поскольку, смешав чистое железо с 2% углерода, мы получим так называемую сверхвысокоуглеродистую сталь, бесполезную саму по себе, но являющуюся исходным сырьем для выделки булата.

Опускаясь по шкале содержания углерода вниз, мы имеем, соответственно, высоко углеродистые (1,5-0,7 %) и низкоуглеродистые (0,6 % и ниже) стали. Повторяю: границы здесь условны и расплывчаты.

Разумеется, для изготовления клинков годится только высокоуглеродистая сталь, приобретающая после термообработки упругость и твердость.

В идеальном варианте количество примесей в сплаве должно равняться нулю — такая сталь будет обладать максимально возможными достоинствами. Но в природе абсолютной чистоты не бывает, и разные вещества, попадая в расплав, придают ему в итоге свойства, отличные от эталонных. По характеру воздействия примеси делят на вредные и полезные, хотя и это условно.

С точки зрения оружейного дела, фосфор и кремний не просто вредны, а являются сущим ядом для стали, повышая хрупкость и сыпучесть. Но известен целый класс так называемых автоматных фосфорных сталей, которые идут на массовое производство второстепенных деталей, выпускаемых станками — автоматами. Они не капризны и легко поддаются резанию.

Вещества, однозначно повышающие механические свойства сталей, называются легирующими. Как правило, легирующих добавок требуется десятые и сотые доли процента, но и этого достаточно, чтобы резко поднять твёрдость, пластичность, способность сопротивляться ударам, трению, сжатию и растяжению, высоким и низким температурам и агрессивным средам.

Веками производство холодного оружия оперировало только углеродистыми сталями, и этого вполне хватало, включая традиции литых и сварных булатов. Но в наши дни металлургия предоставляет богатый ассортимент легированных сталей, изначально превосходящих углеродистые по всем показателям. Если учесть, что почти все из них являются нержавеющими, то лучшего грех и желать.

Практически все легирующие элементы — это металлы. Хром и ванадий, молибден и вольфрам, марганец, титан, алюминий и целый ряд иных, более редких и изысканных присадок, добавленных в скрупулезно точной пропорции, порождают удивительные феномены. Считается (достаточно спорно), что неподражаемые свойства японских клинков есть результат присутствия в тамошней руде (песке) некоторых из перечисленных элементов, но лично нам не довелось видеть документальные отчеты спектрального и прочих анализов.

Популярнейшая марка стали российских оружейников — марганцевая рессорная 65Г, приятная своей доступностью и простотой термообработки. Несравненно лучшие результаты дает использование жаропрочных и жаростойких сталей, относящихся к разряду высоколегированных. Специально для любознательных привожу несколько марок такого рода, превосходящих витиеватостью названий даже имена полинезийских людоедов: 09Х17Н7Ю, 45Х14Н14В2М, 10Х11Н23ТЗМР и т.п.

Особенно любопытные могут раскрыть справочник и насладиться длиннейшем перечнем сталей, достать которые им не суждено никогда в жизни. Осложняется вся эта история тем, что термическая обработка подобных сплавов весьма хитроумна и требует, как минимум, специальных муфельных печей с температурами свыше 1000 градусов — только на таких режимах высоколегированные стал и принимают закалку, а многие из них обретут неординарную прочность лишь после дополнительной обработки жидким азотом, то есть при сверхнизких температурах.

Изготовление многослойного клинка из легированной стали чрезвычайно затруднено, поскольку она не желает свариваться кузнечным способом, какие бы хитрые флюсы вы ни применяли. Охотно сваривается только простая углеродистая сталь, да и то чем больше углерода, тем капризнее. Но не все так плохо — обыкновенный кузнец способен вытянуть в пластину шток старого клапана, а потом закалить в масле почти готовый ножик.

Произнеся слово «кузнец», мы сами обозначили границы, вне которых говорить о клинках попросту глупо. И тысячу, и десять тысяч раз стоило бы повторить — любой нормальный клинок ножа, кинжала, сабли или меча должен быть кованым и только кованым. Подобной проблемы не существовало еще сто лет назад, но теперь, в эпоху торжества прокатных станов, легче отыскать стальной лист заданной толщины, чем обыкновенную кузню с горном, углем и дымом.

В принципе, катаная сталь аналогична кованой — обжатая в раскаленном состоянии с обеих сторон заготовка уплотняется и приобретает почти искомую структуру, но этого мало. Из листового поката можно изготовить сносный, упругий и крепкий клинок, однако он никогда не дотянет до умело откованного на простой наковальне. Дело в том, что в отличие от прокатного стана концентрированные удары молота гораздо интенсивнее деформируют кристаллическую структуру, очищая ее к тому же от примесей, которые словно «выбиваются» прочь.

Кроме того, из листовой заготовки современный мастер вынужден тем или иным способом вырезать контур изделия, профилируя его и добиваясь нужного сечения посредством фрезерования или обдирки на абразивных кругах. То есть мастер попросту убирает излишки металла, оставляя нужную часть.

Принципиально иначе обстоит дело у кузнеца: он не удаляет излишки, а вколачивает их в клинок, истончая его по направлению к лезвию и острию. Изделие формируется из первоначальной порции металла за счет его уплотнения. В результате кованые клинки, если сравнить их с вырезанными, оказываются прочнее и жестче, легче принимают и дольше хранят заточку, неохотнее ржавеют и ломаются. Поэтому и говорится, что по-настоящему качественный нож обязан иметь индивидуально откованный клинок.

Помимо этого, традиционная технология автоматически обходит «подводные камни», что роковым образом подстерегают нынешних мастеров, хотя бы они и подвизались в современной заводской кузнице. Беда в том, что нагрев заготовок там производится в больших газовых печах, в адском пекле ревущего огненного факела. Ничем не прикрытые железки лежат, раскаляются — и стремительно теряют выгорающий углерод. В итоге вместо исходного, к примеру, 1% мы получаем жалкие 0,5%, завидные для гвоздей и неприемлемые для ножа.

В то же время старинный горн с ворохом раскочегаренного древесного угля не только не выжигает углерод, напротив — в верхних слоях происходит интенсивное насыщение металла углеродом, и подобным образом можно даже из обычной железки получить прекрасную сталь. Именно так веками поступали кузнецы-оружейники во всем мире, увеличивая процентное содержание углерода и постепенно доводя его до желаемого.

Но технический прогресс имеет в рукаве много фальшивых тузов. Очередной из них заключается в том, что повсеместное вытеснение древесного угля каменным, а также коксом подвело оружейное ремесло самым фатальным образом.

И каменный уголь, и кокс (особенно кокс) при всей своей способности быстро развивать и долго удерживать высокие температуры содержат столько серы, что впитавшая ее сталь делается абсолютно негодной для клинков.

Поэтому тот, кто решится самостоятельно ковать свою победу, в обязательном и категоричном порядке должен обзавестись мешком березового древесного угля, чистого и нейтрального, состоящего почти из одного углерода. Поскольку в стародавние времена иного угля не знали, то даже и не подозревали, счастливцы, о подобных проблемах.

Прежде чем перейти к рассмотрению конкретных марок отечественных и зарубежных сталей, успевших стать привычным сырьем для холодного оружия, следует заметить, что в этом деле очень много довольно туманных, если не сказать мистических, моментов. Казалось бы, более высокая твердость металла однозначно ставит его на более высокую ступень среди клинков — ан нет!

Когда я работал художником — оформителем, то по роду занятий приходилось часто резать ножом листы так называемого переплетного картона, изготовленного из самого скверного корья, в котором иногда попадался обыкновеннейший песок. И у меня был рабочий нож, изготовленный из старой, советских еще времен, машинной пилы. Возможно, читателю о чем-то говорит марка стали Р18, а уж твердость ее была высочайшей. И, несмотря на все эти изыски, точить чудесный нож приходилось беспрестанно, хотя ни на глаз, ни на ощупь его жало нисколько не притуплялось — просто оно почему-то начинало скользить по проклятому картону вместо того, чтобы резать.

И вот, придя в помраченное состояние духа, я однажды купил в хозяйственном магазине банальный сапожный ножик ценою в грош. Не знаю, из какой стали он был сделан и как его калили, но его можно было согнуть пальцами в любую сторону, и он вовсе не проявлял стремления вернуть первоначальную форму. Однако чем выше был градус моего возмущения непосредственно после покупки, тем неподдельней было изумление, когда на практике выяснилось, что эта мягкая железка, будучи хорошо наточена, режет, режет и режет злокозненный картон самым волшебным образом.

Тогда мне стало понятно, что рабочие качества клинка определяются не абсолютными цифрами твердости по шкале Роквелла, а некой таинственной гармонией твердости и вязкости.

Теперь, переходя к непосредственному обсуждению марок сталей, отметим последний нюанс: учитывая специфику вопроса, следует отдавать абсолютное предпочтение сталям высокого качества, которые обозначаются прибавлением буквы «А» в конце наименования. Например, 30ХГС, но — 30ХГСА, и так далее. В этом случае подразумевается более точное соотношение компонентов при минимальном содержании примесей.

Кроме того, существует целый разряд так называемых электросталей, то есть полученных в электрических печах, в тиглях, без дыма и копоти, с прецизионным соблюдением чистоты и рецептуры. Недаром порою люди, занятые на закрытых военных производствах, хвастаются феноменальными охотничьими ножами, изготовленными из редкостных и не доступных простым смертным сплавов, которых вы не отыщете ни в справочниках, ни на стеллажах заготовительных участков обычных заводов.

Наконец, приходится учитывать и реалии теперешней жизни, а они таковы, что разброд постсоветских годов в российской промышленности проявляется еще и тем, что привычные, проверенные на деле марки (та же 65Г) оказываются непригодными для изготовления клинков ввиду катастрофических нарушений технологии варки. Соответственно, мастерам приходится выискивать нерастраченные запасы из тех времен, когда качество худо-бедно, но соблюдалось.

Особенно привлекательны раритеты сороковых и пятидесятых годов, предназначавшиеся для нужд военной промышленности. Не надо быть историком, чтобы понимать, как дедушка Сталин карал за всевозможные нарушения. Отсюда и результат. Один старый мастер рассказывал мне о фантастических свойствах больших напильников из неведомой ныне стали У15А, что выпускались малыми партиями сугубо для снабжения оборонных предприятий. Клинки из них получались просто невероятные.

Итак, для изготовления колющих и режущих предметов подходят только инструментальные и другие специальные (!) стали высокого качества:

— углеродистые — У7, У8, У10, У12 и т.д.— легированные — ШХ15, 40Х, 40Х13, ХВГ, 65Г, 95Х18, ХВФ, 9ХС и т.д.— высоколегированные — 20Х17Н2, 12Х18Н10Т, Р6М5, Р18, Р14Ф4 и т.д.

Однозначно пригодны все типы рессорно-пружинных, жаропрочных и жаростойких сталей, но под вопросом все типы конструкционных сталей. Достаточно сказать, что дагестанские оружейники в начале XX века лучшим материалом для своих знаменитых клинков почитали отслужившие паровозные пружины.

Любой нормальный справочник содержит длиннейшие перечни и таблицы с указанием марок стали, их состава и свойств. Важнейшим критерием пригодности стали является максимально достижимая закалочная твердость. Цифры ниже 50HRC нас не устраивают. Если сталь отвечает данному параметру, то прочие ее свойства настолько тесно связаны с процессами ковки, закалки, отпуска и всеми иными, что заранее цепляться за них нет никакого смысла — умелый кузнец сделает все, как надо, а опытный термист не подведет.

Поскольку проницательный читатель уже понял, чем следует руководствоваться при выборе отечественной стали, он без труда дополнит свои познания в этом вопросе, изучив любой из множества специальных справочников. Тем не менее, в последнее время в массовую продажу поступает все большее число ножей иностранного производства, на которых четко обозначено, из какого материала сделан клинок. Если фирма-изготовитель вам незнакома и если это не Puma, Marttini или Randall, то во избежание пустой траты денег полезно иметь хотя бы общее представление о марках сталей, применяемых за пределами России.

Наиболее популярной и распространенной остается сталь 440, соответствующая нашей 65X13, из которой (а также из 40X13) делается большинство хирургических инструментов, ввиду чего в народе ее прозвали «хирургической». Как правило, маститые оружейники для изготовления особенных, дорогих штучных изделий используют более редкие марки, обеспечивающие лучшие механические свойства, прежде всего — сочетание высокой (порядка 60 HRC) твёрдости с изрядной вязкостью, но для серийного производства достаточно проверенной и надежной «440»-й.

/Алекс Варламик, по материалам stilet.pp.ua и klinok.zlatoff.ru/

army-news.ru

Ружейные стволы. Технология изготовления - Энциклопедия оружия и боеприпасов

Стадии сворачивания трубки простого ствола.Вверху - пластина-заготовка для ствола

Вероятно, многие согласятся со мной, что главная часть ружья - стволы. Ведь стреляют именно они. Эффективность пушечных выстрелов вызвала у человека желание сделать маленькую «ручную» пушку. Такую пушку в середине позапрошлого века нашли в замке Таннеберг в Хессене (Германия). Она была отлита в конце XIV века. Стрелять из неё с рук было, конечно, тяжело и неудобно и вскоре к ней приспособили арбалетную ложу. Оказалось, что по точности стрельбы и кучности новое оружие серьёзно уступает хорошему луку, хотя по энергии, а значит и пробивной силе, значительно его превосходит. Довольно быстро выяснилось, что с увеличением длины ствола, выстрелы становятся более точными. С этого момента и начинается история огнестрельного оружия.

Сегодня у нашего «переломного» охотничьего ружья есть три главные части: ствол (или стволы, образующие ствольный блок), колодка, ложа.

Ствол придаёт направление полёту дроби или пули. Чем правильнее и тщательнее он изготовлен, тем лучше дробовая осыпь и выше точность.

Колодка запирает казённый срез стволов, служит связующим элементом между стволами и ложей и является в оружии главным инерционным элементом, поглощающим силу отдачи. В колодке монтируются запирающие, ударно-спусковые и предохранительные механизмы.

Схема получения скрученных ствольных трубок

Ложа обеспечивает удобство наведения оружия на цель, естественность прицеливания и смягчает действие силы отдачи за счёт её частичного превращения во вращательный момент.

Прежде чем рассказать о сегодняшней технологии изготовления оружейных стволов, хочется познакомить читателей с частью оружейной истории, касающейся совершенствования изготовления этой важнейшей части оружия. Ведь изготовить хороший ствол - задача довольно трудная даже при сегодняшнем уровне развития машиностроения. Однако настойчивость, усердие и изобретательность наших далёких предков находила различные варианты решения этой задачи. Причём уровень качества лучших изделий XVIII века сегодняшним специалистам представляется почти загадочным. Нам хочется рассказать, каким путём мастера прошлого создавали замечательное оружие, показать некоторые его образцы и вместе подумать о величии их духа с надеждой, что это укрепит и наш собственный.

В 1811 году Генрих Аншютц (из хорошо известной оружейной династии) издал книгу об оружейной фабрике в г. Зуль. Он пишет о четырёх типах технологий получения ствольных трубок: обычной, скрученной, навитой и стволах из «Дамаска».

Принцип получения навитых стволов

Обычный (простой) ствол получали из полосовой заготовки длиной 32 дюйма (812,8 мм), шириной 4 дюйма (101,6 мм), толщиной 3/8 дюйма (9,525 мм). После разогрева эту полосу кузнечным способом загибали на оправке таким образом, что её продольные кромки прилегали друг к другу встык, параллельно оси канала ствола. Этот стык сваривался кузнечным методом и тщательно проковывался. Есть несомненные указания, что обе длинные стороны прямоугольной заготовки иногда сгонялись «на ус» и сваривались не встык, а внахлёст. После сварки и охлаждения стволы проходили четырёхгранной развёрткой, обтачивали на токарном станке внешнюю поверхность, которую потом шлифовали вручную на большом круге из мягкого песчаника диаметром 1,75 м. С казённой стороны в ствол вкручивалась винтовая заглушка, которая иногда тоже проваривалась. Конечно, «заглушались» стволы всех дульнозарядных ружей, независимо от технологии их получения.

Скрученный ствол. Сварной шов в обычном стволе, располагавшийся параллельно оси ствола, часто был местом разрушения при стрельбе. Чтобы избежать этого, простой сваренный ствол начинали повторно нагревать в центральной части и скручивали вдоль оси по всей длине так, чтобы сварной шов имел форму винтовой линии. Этот приём делал шов значительно менее нагруженным при выстреле.

Навитой ствол получали путём постепенного навивания стальной полосы на оправку в виде стержня или трубы. Винтообразный сварной шов последовательно проковывали кузнечным молотом.

Схема получения полосы дамасской стали

Дамасские стволы. Ещё в средние века в Дамаске (сегодня это Сирия) изготовляли мечи, обладающие исключительно высоким качеством. Как только технология их получения стала понятна европейцам, её попытались применить и для изготовления стволов. Основа секрета состояла в том, что заготовки для клинкового оружия получали кузнечной сваркой полос из тонких элементов, состоящих из сталей различавшихся содержанием углерода. Первоначально сваренную и прокованную полосу многократно складывали и проковывали. По сравнению с обычной однородной заготовкой дамасская обладала тремя принципиальными преимуществами. По сути, она представляла конструкцию, объединяющую свойства отдельных материалов. Кроме того, композиция не только исключала внутренние дефекты, которые бывают в однородной заготовке, но и создавала оптимальную структурную ориентацию. Принципиально дамасские стволы получали методом навивки. Однако для получения исходной полосы приходилось проделать просто титаническую работу. Сначала сваривали брусок из ста прутков сталей разного состава квадратного сечения со стороной 0,7 мм, уложенных в определённом порядке. Брусок получался сечением около 7 мм х 7 мм. Эта процедура требовала невероятно тонкого кузнечного чутья, поскольку пережечь тонкие проволочки было проще простого. Сваренный брусок снова разогревали и скручивали вдоль. Затем брали несколько таких скрученных брусков (чаще три или шесть) сваривали их между собой и расковывали в полосу. В некоторых случаях из этих скруток плели что-то вроде косичек, которые могли состоять из разного числа прядей и иметь разную схему плетения. Косички сваривали и проковывали в полосу. Эту полосу и навивали на оправку. Затем заготовку торцевали, канал проходили развёрткой, наружную поверхность сначала обтачивали на токарном станке, потом шлифовали. Процесс воронения в те времена состоял в обработке довольно сильными кислотами. В результате, малоуглеродистые прутики протравливались значительно сильнее по сравнению с высокоуглеродистыми, и на поверхности ствола появлялся оригинальный мелкий рисунок, отражавший всю предшествующую схему получения полос. Обычно на дамасских стволах ширина полосы видна невооружённым глазом.

Стремительное развитие металлургии в конце XIX века привело к появлению углеродистых сталей с высокими механическими свойствами. Перспективность их использования для изготовления стволов казалась очевидной. Однако ещё в первой четверти XX века многие оружейники Европы продолжали делать стволы по «дамасским технологиям». Сегодня необходимо понимать, что такие стволы, хотя и являются памятниками фантастическому усердию оружейников предыдущих поколений, но всё же уступают по всем важнейшим показателям современным легированным ствольным сталям. Напомним нашим соотечественникам, что сталь 50А и даже 50РА, из которой и в Туле, и в Ижевске делают сегодня стволы, к легированным ствольным сталям не относятся. И ещё о дамасских стволах. Спустя сто и более лет после изготовления весьма вероятно, что кузнечная сварка элементов может значительно разрушиться и прочность стволов может оказаться недостаточной для обеспечения безопасности стрельбы. Будьте очень осторожны при желании пострелять из старого ружья с дамасскими стволами.

Введение в состав углеродистой стали хрома, ванадия, никеля, кремния, марганца и других элементов привело к значительному повышению важнейших свойств ствольных сталей - упругости, прочности при растяжении, поверхностной твердости, коррозионной стойкости. Более того, эти технологии позволяют получать стали с заранее заданными свойствами. Всё это позволило перейти к изготовлению однородных заготовок для ружейных стволов. Этот процесс начался ещё в последней трети XIX века и около полувека сосуществовал с «дамасской» технологией.

Развитие технологии изготовления ружейных стволов.

Рихтовка ствольной заготовки

Новый этап начинается с отказа от стволов, получаемых из полос, и перехода к стволам, канал которых образовывался глубоким сверлением. Эта технология несравненно более производительная, но для её реализации потребовалось решить ряд серьёзных проблем, рассказать о которых нам хочется, чтобы современные читатели могли представить, какой ценой получались ружья, обладающие замечательным боем. Новая технология изготовления ствольных заготовок начинается с ковки, которая не только придаёт заготовке ствола внешнюю форму, приближающуюся к готовому стволу, но и обеспечивает улучшение структуры стали благодаря уменьшению её зернистости. Обычно для поковки отрезают кусок круглого проката диаметром около 50 мм. Длина этой заготовки зависит от будущей длины ствола. Куска длиной 320 мм хватает, чтобы из неё вытянуть ковкой заготовку длиной 750 мм со средним диаметром 30 мм. Конечно, после ковки диаметр заготовки в области патронника заметно больше, чем у дульного среза. Здесь следует отметить, что при обычной ковке около 15% стали уходит в окалину. Кузнецы говорят, что металл «угорает».

Оружейное сверло:а - режущая пластина,b и с - направляющие,d - канал для подводаохлаждающей жидкости,е - полость дляудаления стружки

Для снятия внутренних напряжений в откованных заготовках их нагревают до (примерно) 850-860 градусов и выдерживают около получаса. Точные параметры нагрева зависят от марки ствольной стали и толщины заготовки. Задача снятия внутренних напряжений очень важна для всех стадий производства стволов. Особенно важно, чтобы не было напряжений в готовой ствольной трубке, предназначенной для образования ствольных блоков из двух или более стволов. Дело в том, что пайка мягкими и особенно твёрдыми припоями требует значительного и асимметричного нагревания стволов. Неоднородно происходит и охлаждение спаянного блока. Наличие внутренних напряжений приводит к заметной деформации стволов после пайки. Более того, высокий разогрев внутренней поверхности стволов при стрельбе, особенно интенсивной, может вызвать необратимую деформацию ствола, если в нём оставались напряжения. После нормализации проводят закалку. Суть её заключается в получении оптимальных свойств за счёт формирования тонкой структуры металла. Любая сталь является сложной в фазовом отношении системой, содержащей как минимум две кристаллические модификации чистого железа, карбид железа, карбиды металлов-примесей и твёрдые растворы некоторых из этих компонентов друг в друге. Температурная обработка меняет фазовое состояние этой сложной системы и размеры отдельных фаз, что очень существенно влияет на эксплуатационные свойства. Закалка заключается в равномерном разогреве детали до температуры, зависящей от рецептуры стали, из которой она изготовлена. Заготовки из стали Ск 65, которую в Германии часто используют для стволов, нагревают до 840 градусов. После этого её опускают в масло, имеющее комнатную температуру. Затем заготовку «отпускают», для чего её прогревают в муфельной печи около 4 часов при температуре 580-600 градусов. Такой сложной термообработкой можно значительно влиять на твёрдость, вязкость, упругость и предел прочности при растяжении.

Термически обработанную заготовку тщательно рихтуют. Это делают, чтобы при сверлении, которое происходит при вращении заготовки, она не вибрировала. Рихтуют заготовку в горизонтальном положении при вращении, корректируя её форму прижимными роликами. После рихтования заготовку снова подвергают нагреву для снятия внутренних напряжений, затем торцуют с обеих сторон и снимают фаски.

Рихтовка ствола по теневым кольцамс помощью винтового пресса

После этого приступают к самому тонкому процессу в изготовлении ствола - сверлению. Глубокое сверление, особенно в длинной заготовке с низкой продольной устойчивостью - особая песня. В оружейном деле для этого используют специальные станки, похожие на токарные. В них закреплённая заготовка вращается, а специальное сверло движется поступательно. В этом процессе две главные проблемы: увод сверла от оси заготовки и удаление стружки. Первую проблему можно решить за счёт однородности структуры заготовки и относительно невысокой скорости подачи сверла и скорости резания, чтобы исключить вибрацию заготовки. Разумеется, эти ограничения увеличивают продолжительность сверления. Проблема удаления стружки, которая иногда не только портит поверхность канала, но и заклинивает сверло, решается специальными приёмами. В XIX веке применялись «ружейные свёрла», по конструкции они были близки к развёрткам, то есть в их основе имелась штанга, на всей рабочей длине которой был выбран цилиндрический сектор с углом около 100 градусов. Конструкция сверла достаточно проста и хорошо понятна из чертежа. Через небольшое отверстие в теле сверла в зону резания подаётся охлаждающая эмульсия, которая по желобку, параллельному оси сверла, уносит с собой образующуюся стружку. Такие станки давно стали многошпиндельными и достаточно автоматизированными. Это позволяет одному рабочему контролировать сверление на нескольких станках. Этот процесс всё-таки не гарантировал высокую степень чистоты обработки поверхности канала ствола. Стружка часто была основной причиной этого. Кроме того, производительность сверления была невысокая.

Сверло Байснера -рабочая итыльная части

В 1937 году Бургсмюллер качественно изменил схему сверления. Он предложил вертикальное расположение заготовок и направле¬ние сверления снизу вверх для лучшего удаления стружки. В качестве основы сверла он применил трубу, на рабочей головке которой были прикреплены три направляющие пластины и приварена одна режущая. Процесс резания происходит при охлаждении сжатым воздухом, который подаётся в зазор между поверхностью сверла и стенками образующегося отверстия. Стружка же совсем не контактировала со стенками отверстия и вместе с воздухом уносилась вниз. Значительно больший момент сопротивления скручиванию, которым обладала «труба» по сравнению с профилированной штангой, позволяет, кроме получения хороших поверхностей, использовать при сверлении более высокие скорости резания и подачи.

В 1942 году Байснер усовершенствовал этот метод. Он вернул сверлильному станку горизонтальное положение, предложил использовать масло в качестве охлаждающей жидкости и усовершенствовал сверлильную головку. Масло подавалось под давлением в зазор между сверлом и образующейся цилиндрической поверхностью и выносило стружку через центральный канал в специальный сборник. Поверхность получалась очень гладкой в некоторой мере благодаря полированию направляющими. Тем не менее, после сверления канал ствола обрабатывается развёрткой.

Перед тем как приступить к обработке наружной поверхности ствола его рихтуют: проверяют прямолинейность оси канала и при необходимости выправляют её с помощью винтового пресса. Проверку правильности канала осуществляют по теневым кольцам, что каждый охотник может сделать и сам. А вот процесс правки требует не только хорошего зрения, но и большого чувства металла, приходящего только с опытом. Дело в том, что ствол имеет упругость. Поэтому если под нагрузкой он выпрямился, то после её снятия частично вернётся в исходное состояние. Опытный мастер чувствует, насколько ствол нужно «перегнуть», чтобы после снятия нагрузки он стал безукоризненно правильным.

Проточка шеек для люнетов:1 - центр, 2 - скользящая муфта,3 - стойка, 4 - шейка для люнета

После формирования канала ствола встаёт очередная непростая задача: токарно обработать ствол снаружи. При этом главная трудность, чтобы центр наружной поверхности точно совпал с центром канала ствола. Если этого не сделать, то ствольная трубка получится разностенной. Кроме того, из-за большой величины отношения длины ствола к его диаметру при токарной обработке поверхности ствола его необходимо фиксировать двумя люнетами, для каждого из которых нужно предварительно проточить шейки. Для корректного выполнения этой операции на середине длины ствола устанавливают специальную муфту, позволяющую правильно удерживать ствол за его необработанную поверхность при проточке шеек для люнетов. Когда шейки проточены, муфту можно снять и выполнить наружное обтачивание ствола по копиру. Эти токарные обработки могут привести к некоторой деформации ствола. Поэтому ствол в очередной раз контролируют по теневым кольцам и при необходимости рихтуют. Чистовое обтачивание и шлифование производится после того, как отдельно прошлифовываются шейки для люнетов. Заключительная стадия изготовления ствольных трубок - тонкое шлифование, называемое в оружейном деле хонингованием.

Схема ротационной ковки:1 - разогрев токами высокой частоты,2 - начало ковки, 3 - процесс ковки,4 - окончание ковки

Существенным прогрессом в изготовлении ружейных стволов является их ковка на оправке. Конечно, оборудование для этого процесса стоит недёшево. Поэтому формование стволов ковкой рентабельно только при больших объёмах производства. Однако экономия средств и времени получается тоже значительная. При изготовлении стволов методом ротационной горячей ковки используют заготовки длиной 260-280 мм и диаметром около 35 мм. В ней сверлом Байснера делают сквозное отверстие диаметром 20,5 мм. Заготовку закрепляют на закалённой, тщательно отполированной оправке, имеющей форму внутренней поверхности готового ствола. После электроиндукционного прогрева заготовки до необходимой температуры её подают в зону ковки, где она, вращаясь вдоль своей оси, проходит под ударами крестообразно расположенных молотов. За полторы минуты заготовка принимает внешнюю и внутреннюю форму ствола с патронником. Закалка после такой проковки не проводится. Внешнюю форму ствола доводят токарным обтачиванием и шлифованием. Канал ствола начерно проходится развёрткой. Окончательную обработку канала ствола, включая патронник и дульное сужение, проводят после сборки ствольного блока.

Ещё более прогрессивным методом изготовления стволов является холодная ковка на оправке. Одно из её преимуществ в том, что она экономит около 15% дорогой ствольной стали, уходящей в окалину при горячей ковке. Кроме того, внутренняя поверхность ствола получается точной копией оправки, так что можно получать полностью готовые стволы (с патронником, дульным сужением и нарезами). Поверхность канала ствола требует только полировки. К тому же структура холоднокованого ствола обеспечивает ему высокие механические свойства. Правда, холодная ковка требует более мощных молотов и большей продолжительности. Она длится чуть более трёх минут. Внешнюю форму доводят обтачиванием и полированием. Проверку правильности оси канала проводят и после этой технологии и, если есть необходимость, рихтуют. Завершающей стадией изготовления отдельных ствольных заготовок является отстрел и клеймение.

Владимир ТихомировМастер ружье 10-2004

weaponland.ru

Хороший металл для самодельного холодного оружия

Здравствуйте! Сегодня я хочу поделиться накопленным опытом по использованию и добыванию материала для ножей и вообще оружия. Т.к. заказать на заводе штучно малые куски почти что невозможно или жутко дорого, то приходится искать аналоги, заменители…и оказывается халявного металла вокруг – пруд пруди! И качественного и всякого разного. Начнем с самого простого и распространенного.

Этюд 1. Черняга или Ода водопроводным трубам

Здесь поле для захвата широченное: это и полоса со стройки, уголки, трубы от батарей, швеллера, арматура. Этого добра всегда можно везде найти в сколь угодно большом количестве. «А зачем?» - спросят поклонники высокотехнологичных сплавов и сталей. А очень просто. Из чего делать накладки, всякие кольца и прочее? Ясно, что самое простое и дешевое – черняга.

Теперь поговорим о том, как можно улучшить качество нашего материала. Вышеперечисленные изделия сделаны из ковкого железа и хорошо обрабатываются прессовкой и ковкой. При этом от деформаций, металл приобретает более высокую твердость и прочность. Да, я поклонник холодной ковки, что делать? Но это реально работает! Например, для изготовления накладок на какой-нибудь нож для выживания я бы взял не просто пластину нужной толщины, а полосу раза в 2 толще, чем надо и разогнал бы ее до нужной толщины холодной ковкой, тем самым упрочнил металл и значительно увеличил качество моего изделия. Вообще качество металла в большой степени зависит от того, как его обрабатывают. Можно и из арматурины выковать классный штык-нож хорошего заводского качества, а можно и высокотехнологичную сложнолегированную сталь испортить так, что только в мусор и годится.

Холодной ковкой мне удалось довести по прочности кромки лезвия сталь 3 до рессорно-пружинной 65Г (сырой, с завода).

Еще один пример полезного наклепа – хромоникелевая нержавейка. Отличить ее не сложно: она не полируется болгаркой, а покрывается сизой пленкой окислов. После расковки в 2-3 раза она становится пружинистой и упругой, лично проверял. Про латунь уже писал, повторяться не буду.

Ниже – нож-меч, кованный из хромоникелевой нержавейки.

Но, но, но…важно, как и везде иметь чувство меры! Здесь правда подскажет только опыт. Если перебить и измочалить сталь чрезмерной уковкой или неправильной техникой ковки, то ничего хорошего не выйдет, треснет и сломается. Здесь работает только одно правило: чем тверже сталь, тем хуже и меньше она прессуется, тем вероятнее ее растрескивание.

Техника ковки хорошо описана у Кузнецова, но это для горячей. Для холодной достаточно взять молоток с круглым бойком.

Еще один вариант применения холодной обработки – это проделывание отверстий. Можно конечно взять дрель и за минуту наковырять дырок, где надо. А можно пробить их. Это трудно, долго, но зато отверстие не будет ослаблять наше изделие и само по себе будет лучше держать форму. Придется правда стачивать розочки рядом с дыркой, но оно того стоит. Пробивать можно обычным строительным гвоздем для бетона, они копейки стоят. Желательно конечно сделать специальную приспособу под это дело, но при должной сноровке можно и с помощью плоскогубцев и молотка справиться. Забегая вперед, скажу, что этот способ выручает там, где нужно просверлить уже закаленную тонкую (1-3 мм) сталь, режим термообработки которой неизвестен или нет возможности (или желания) перезакаливать. Нужно только под дырку подложить гайку чуть большего номера, чем отверстие, иначе вашу заготовку просто разорвет трещиной.

Отдельно стоит сказать об арматуре. В ней металл содержит довольно много углерода и первичная закалка у нее неплохая. При наличии горна и угля из нее можно делать очень хорошие вещи.

Теперь пару слов про защиту от коррозии. Это больное место любых сталей, кроме разве что нержавейки и высоколегированных металлов (сия участь не избежала и цветных сплавов, лично видел прогнивший насквозь уголок из дюраля)

Неплохой способ придумали сварщики-автомобилисты: пока металл еще горячий (светится) нужно быстро намазать его солидолом. Довольно длительное время так обработанная сталь не поддается ржавчине. Вот, в общем-то, и все о водопроводных трубах.

Этюд 2. У10 и иже с ней

Здесь материала тоже много. Но и обработка сложнее. Здесь уже необходимо уметь проводить термообработку и знать ее режимы. Но что собственно обрабатывать?

Начнем с гаража и дачи. Для кухонных ножей (а также каких-нибудь скрытых лезвий-стилетов) хорошо подойдет старая тупая пила, которую точить ну никак не охота. Здесь радует простота обработки: закаливать ее не надо, достаточно вырезать, наклепать спуски и кромки, отшлифовать и можно спокойно заниматься всякими резными рукоятями, зеркальной полировкой и прочими художественными изысками. Наклепка производится, пока торец не станет в 2 раза тоньше, чем остальная пила. Здесь так же лучше поэкспериментировать, благо, что материала хватает.

Хорошую твердость и качество имеет пружинная сталь. Ленточные пружины от часов, обычные от стиральных машин…свою боевую цепь я делал именно из пружины. Из нее же можно сделать классный стилет-иглу (тоже когда-то делал)

Далее несколько сложнее.

Циркулярные диски стоит перезакаливать, т.к. с современной логикой «экономии» режущие кромки у диска из твердых сплавов, а остальной металл – недокаленный, вязкий, но углерода там, в принципе достаточно. В этом плане очень выигрывает советский инструмент, который в отличие от современного закаливали полностью. Если вы купили участок в какой-нибудь глухой деревне, то вам может о-о-очень сильно повезти: я на своем нашел огромный циркулярный диск (смотри статью «боевой тесак»), 6 (!) лезвий от шпоночного станка. Последнее – изумительный материал для ножей! Древнегерманский нож сакс из этих полотен:

Вообще хорошо закаленную сталь, довольно просто отличить от обычной стали по звону. У мягкой черняги звон глухой, а у закаленной – высокий чистый звук. Вся сложность обработки каленого материала заключается в том, чтобы не перегреть, а если сталь хрупкая – то правильно отпустить.

Это кованый кинжал из углеродистой стали с накладками рукояти из стали 3 и дюралевым больстером. Какая конкретно сталь – не скажу, лезвие мне досталось в подарок.

Теперь перейдем к рессорам и напильникам. Это материал для тех, кто планирует заняться ковкой. Рессора изначально довольно мягкая, а у напильника сильная закалка только на поверхности и если вы просто сточите его, то рискуете попасть именно на мягкую сердцевину. Сложные и интересные методы ковки стали описывать здесь не буду, а сделаю ссылочку на специалиста, который уже не один десяток лет занимается кузнечным делом. kuznec.ru или наберите в поисковике Виктор Кузнецов кузнец. Первая ссылка – его сайт.

Добавлю здесь только то, что старую рессору лучше не брать, т.к. на ее поверхности имеется много микротрещин, которые снижают качество и прочность изделия. Рессора плоха для ножей и больше подходит для топоров и мечей.

Этюд 3. Лигатуры или да поможет нам цветмет

Легированные и сложнолегированные стали – большая редкость. Но сразу условимся: мы говорим об углеродистых легированных сталях, т.к. качество режущей кромки определяет именно количество углерода, а не чего-либо еще.

Самое простое и доступное, на мой взгляд – отрезные алмазные диски по камню и бетону. Их основная часть состоит из стали х12 или 100х12 в российской ножевой маркировке. Эта сталь прекрасно закаливается, отжигается и обладает всеми положительными свойствами такой же по углероду обычной стали (У10). Также нет проблем с уковкой по толщине, т.к. диски обычно не толще 3 мм. Обратная сторона медали – наличие слабой токсичности этой стали. Дело в том, что для достижения свойств нержавейки необходимо 13% хрома, в этой стали его меньше. Если после шлифовки нож  из этой стали вытереть насухо, то он не заржавеет. Но, с другой стороны, опустите его в горячий чай, и лезвие мигом покроется чем-то невразумительно темным. Это окись хрома, которая, в общем-то, канцероген. Для ножей походных, рабочих, боевых эта сталь идеальна, но на кухне ей делать нечего, и прежде чем отрезать таким ножом себе колбасы стоит подумать. Полубоевой нож из этой стали:

Гарда – нержавейка, рукоять – дюраль.

Далее – гаечные ключи. Их не надо перезакаливать, можно просто вытачивать из них и не париться. Из гаечного ключа идеальными получаются метательные ножи. Они обладают убийственной прочностью, неплохо держат острие, плохо ржавеют и обладают своеобразным голубоватым оттенком (добавка ванадия) Ниже – набор метательных ножей, два бодзе-сюрикена из арматуры и два метательных ножа из гаечных ключей. Третий – отпущенный обломок магазинного ножа.

Оружие делать можно не только из металла. Например, экзотично и необычно смотрится куботан из стекла или дубовый кинжал:

Оба они незаметны для металлоискателей и не считаются холодным оружием. Дубовый кинжал пробивает толстую джинсу, сам проверял.

Если сталь неизвестна

А что делать, если вы нашли лакомый кусочек стали и не знаете, подойдет ли он вам? Есть несколько способов выяснить его качество.

1. холодная ковка и керн.

Мягкая галимая черняга легко сминается молотком, а дыры в ней керном пробиваются на ура. Твердые сплавы же мнутся плохо и скорее расколются, чем помнутся, а кернер по ним скользит и трудно бить дырку в одном и том же месте. Ярким показателем твердости является полное сминание острия гвоздя по бетону об сталь.

2.

Метод искровой пробы помогает установить примерный состав стали и наличие лигатуры. Заключается в следующем: на наждаке (или болгарке) исследуемую сталь обтачивают и смотрят на цвет и характер искр. Ниже таблица данных

металл

Цвет и характер искр

Низкоуглеродистая сталь (черняга)

Непрерывный пучок соломенно-желтых искр, звезд мало.

Углеродистая

Светло-желтый пучок со звездами

У12, У13

Плотный короткий пучок с большим количеством разветвленных звезд

У7, У10

Расходящийся пучок светло-желтый , много звезд.

Хромистая

Плотный пучок темно-красный, много сильноразветвленных звезд.

Хромовольфрамовая (быстрорез)

Прерывистый темно-красный пучок с более светлыми каплевидными звездами

Пружинная кремнистая

Широкий темно-желтый пучок со светлыми звездами.

Кобальтовая быстрорежущая

Широкий темно-желтый пучок без звезд.

3. Поговорим о нержавейке. Помнится, в одном из комментов здесь кто-то высказывался о непригодности нержавейки для ножа. Как отличить ферритную (с малым количеством углерода) от аустенитной нержавейки? Все просто: ферритная не магнитится. Именно соединение углерода в сплаве усиливает магнитные свойства железа. Поэтому магниты и делают из высокоуглеродистых сплавов (за исключением современных ноу-хау из неодима или алюмомарганцевых).

4. Еще подскажет личный опыт. Перебрав центнер-другой разного железа, вы научитесь определять «на глаз» то, что подойдет, а с чем лучше и не возиться.

Бонус для любителей ножей и ножеделов

Что определяет качество вашего ножа? Опираясь, на какие характеристики можно сказать: этот нож хороший, а тот – хлам? Начнем с того, что разные ножи сделаны для разных целей. Универсального ножа просто не существует.

Основные характеристики ножа следующие:

- Твердость

- Прочность

- Вязкость

В зависимости от того, какой из признаков ярче, и определяется назначение ножа.

Миф: чем тверже нож, тем лучше режет

Если ваш знакомый на рыбалке перед вами хвастается, что, мол, у него нож 72 единицы по Роквеллу, а ваш всего лишь 54, то совсем не повод расстраиваться и завидовать. Лучше понаблюдать, сколько раз этот знакомый будет точить нож за рыбалку и как быстро он затупится. Очень твердое лезвие имеет неприятное свойство выкрашиваться при сильных нагрузках (кость какая-нибудь). А еще очень твердое лезвие трудно точить. Так что пускай он мучается с заточкой, а мы возьмем помягче, но получше. Да и вязкий нож проще и легче точить, как говорится, провел по голенищу сапога – и он снова бреет.

Прочность ножа складывается из твердости и вязкости. Эти же две характеристики определяют качество режущей кромки, и в то же время взаимоисключающие. Ножи с высокой твердостью целесообразно делать толще и затачивать под большим углом, иначе кромка выкрошится.

Нож для более мягких материалов (колбаса, огурцы и т.д.) лучше сделать несколько мягче. Он будет неплохо держать заточку, а угол можно будет сделать меньше, что значительно облегчает жизнь. Твердые тяжелые ножи больше годятся на порубить-построгать, чем в обычной жизни. Если же рубить и строгать мягким ножом, то очень скоро кромка сомнется и будет не слишком весело ее перетачивать.

Чтобы жало ножа не обламывалось, нужно делать его угол пошире, а спуски под большим углом. На внешний вид это несколько повлияет, но зато прочность повысится.

Неплохой, но жесткий способ проверки на прочность – изгибание лезвия в тисках на угол в 45 градусов. Если нож хороший, то он вернется в прежнее состояние без деформаций или не даст себя согнуть (для тонких), не сломавшись при этом.

На качество реза – проверка на весах. Кладем канат на весы и делаем резы до тех пор, пока нажим на нож не превысит определенное значение (например, 15 кг). Считаем резы и сравниваем.

Постскриптум

Для оружия, если есть возможность, лучше брать импортную сталь, желательно немецкую или японскую.

Что может быть лучше, чем

нож

из перекованного японского старого подшипника от любимой мазды? Наш же металл содержит изрядную долю фосфора и серы, которые вредны для стали.  Из-за этого изделие быстрее сгнивает и имеет худшую прочность. А как же иначе? На Урале заводы еще со времен Петра 1 стоят, по тем технологиям гонят. Из нашего же металла лучше брать электросталь (сталь, выплавляемую не углем, из которого сера и идет, а с помощь электролиза). Это все те же подшипники. Для горна стоит нажечь древесного угля, т.к. он чистый, не содержит серы, которая в процессе нагревания может перейти в металл.

 

Вот и все, что я хотел рассказать о сталях. Удачи в трудах и творчестве!

Автор: Андрей Галкин

sekach.ru

Оружейные стволы - Оружие - Охотники.ру

Чтобы из маленькой пушки было удобнее стрелять, к ней приспособили арбалетную ложу. Оказалось, что по точности стрельбы и кучности новое оружие серьезно уступает хорошему луку, хотя по энергии, а значит, и пробивной силе значительно его превосходит.

 

В Китае хранится старая пушка с такой надписью: «Я несу смерть предателю и уничтожение мятежнику». На ней проставлен год ее отливки — 618 до нашего летоисчисления. Это самое древнее орудие. Амбразуры в Великой Китайской стене, наверное, оставляли открытыми, и рецепт пороха через триста с небольшим лет индийской разведке удалось выкрасть. Затем он попал в Персию, оттуда к арабам и, наконец, в Европу. В 85 году уже нашего летоисчисления порох, теперь называемый «греческий огонь», был привезен каким-то греком в Константинополь. Еще одна важная историческая отметка была определена в 1849 году. Тогда на дне цистерны для сбора дождевой воды в городе Таннеберг (Германия) нашли ствол первого нарезного ружья, точнее, пожалуй, ручной нарезной пушки. Ружье имело запальное отверстие для фитиля и было датировано концом XIV века. Кто и где изготовил это «проружье», не ясно, но германские историки его называют «таннебергским». Однако их итальянские коллеги нашли документальное упоминание о первом применении ружья в Италии в 1331 году. Эти факты позволяют считать, что в первое ручное огнестрельное оружие Европы «родилось» в XIV веке. Его родителями можно считать пушку (матерью) и арбалет (отцом). Это происхождение подтверждается и способом выражения калибров, которым мы пользуемся сегодня. Калибр старинных пушек определяли весом круглого ядра подходящего диаметра, выраженного в фунтах. Сегодня при определении калибра гладкоствольных ружей мы тоже пользуемся «фунтовым» весом свинцовых шариков, правда, указываем не сами фунты, а число этих шариков, получающихся из одного (английского — 453,6 г) фунта свинца. Показательно, что во французском языке сегодня «ствол» и «пушка» называются одним словом «canon». Да ведь и мы иногда свое ружье называем «пушкой».

Чтобы из маленькой пушки было удобнее стрелять, к ней приспособили арбалетную ложу. Оказалось, что по точности стрельбы и кучности новое оружие серьезно уступает хорошему луку, хотя по энергии, а значит, и пробивной силе значительно его превосходит. Довольно быстро выяснилось, что с увеличением длины ствола выстрелы становятся более точными. С этого момента и начинается история ручного огнестрельного оружия. Значительная часть этой истории — совершенствование качества стволов. Их изготовление до сегодняшнего дня самое сложное в производстве ружей. Ствол придает направление полету дроби или пули. Чем правильнее он изготовлен, тем лучше дробовая осыпь и выше точность попадания. Термин «кучность» применительно к пулевой стрельбе характеризует рассеивание серии пулевых попаданий, полученных при стрельбе с прицеливанием в одну точку. В значительной мере качество боя оружия определяется тщательностью изготовления ствола.

Прежде чем рассказать о сегодняшней технологии изготовления оружейных стволов, хочется познакомить читателей с частью оружейной истории, касающейся совершенствования изготовления этой важнейшей части оружия. Ведь изготовить хороший ствол — задача довольно трудная даже при сегодняшнем уровне развития машиностроения. Однако настойчивость, усердие и изобретательность наших далеких предков находили различные варианты решения этой задачи. Причем уровень качества лучших изделий XVIII века сегодняшним специалистам представляется почти загадочным. Нам хочется рассказать, каким путем мастера прошлого создавали замечательное оружие, показать некоторые его образцы и вместе подумать о величии их духа с надеждой, что это укрепит и наш собственный.

В 1811 году Генрих Аншутц (из оружейной династии хорошо известной сегодня) издал книгу об оружейной фабрике в г. Зуль. Он пишет о четырех типах технологий получения ствольных трубок: обычной, скрученной, навитой и стволах из «дамаска».

Простой ствол получали из полосовой заготовки длиной 32 дюйма (812,8 мм), шириной 4 дюйма (101,6 мм) м толщиной 3/8 дюйма (9,525 мм). После разогрева эту полосу кузнечным способом загибали на оправке таким образом, чтобы ее продольные кромки прилегали друг к другу встык, параллельно оси канала ствола. Этот стык сваривался кузнечным методом и тщательно проковывался. Есть несомненные указания, что длинные стороны прямоугольной заготовки иногда сгонялись «на ус» и сваривались не встык, а внахлест. После сварки и охлаждения ствол проходили четырехгранной разверткой, а затем шлифовали свинцовыми притирами с абразивными порошками, постепенно используя все более тонкие. Снаружи ствол обтачивали на токарном станке, потом шлифовали вручную на камне из мягкого песчаника диаметром 1,75 м. С казенной стороны в ствол вкручивалась винтовая заглушка, которая иногда тоже проваривалась.

СКРУЧЕННЫЙ СТВОЛ

Сварной шов в обычном стволе, располагавшийся параллельно оси ствола, часто был местом разрушения при стрельбе. Чтобы избежать этого, иногда поступали так. Простой сваренный ствол повторно нагревали в центральной части и скручивали на оправке вдоль оси так, чтобы сварной шов имел форму винтовой линии. Постепенно так скручивали ствол по всей длине. Этот прием делал шов значительно менее нагруженным при выстреле.

Навитый ствол получали путем постепенного навивания стальной полосы на оправку (стержень или трубу). Винтообразный сварной шов последовательно проковывали кузнечным молотом. Интересно, что идея изготавливать ствол навивкой спустя много лет начала использоваться для производства артиллерийских стволов. Правда, их наматывали не по винтовой линии, а один слой на другой, подобно тому, как мы наматываем на картонную бобину ленту скотча (или туалетной бумаги, как вам больше нравится). Стальную ленту в производстве артиллерийских стволов наматывали с натягом. Таким образом, удавалось получать стволы необычайно высокой прочности.

Дамасские стволы. Еще в средние века в Дамаске (сегодня это Сирия) изготовляли мечи, обладающие исключительно высоким качеством. Они были очень жесткими и одновременно гибкими. Как только технология их получения стала понятна европейцам, ее попытались применить и для изготовления стволов. Основа секрета состояла в том, что заготовки для клинкового оружия получали кузнечной сваркой полос из тонких элементов, состоящих из сталей, различавшихся главным образом содержанием углерода. Первоначально сваренную и прокованную полосу многократно складывали и снова проковывали. По сравнению с обычной однородной заготовкой дамасская обладала тремя принципиальными преимуществами. По сути, она представляла конструкцию, объединяющую свойства отдельных материалов. Кроме того, композиция не только исключала внутренние дефекты, которые бывают в однородной заготовке, но и создавала оптимальную структурную ориентацию.

Принципиально дамасские стволы получали методом навивки. Однако для получения исходной полосы приходилось проделывать просто титаническую работу. Сначала сваривали брусок из ста прутков сталей разного состава квадратного сечения со стороной 0,7 мм, уложенных в определенном порядке. Брусок получался сечением около 7 мм на 7 см. Эта процедура требовала невероятно тонкого кузнечного чутья, поскольку пережечь тонкие проволочки было проще простого. Сваренный брусок снова разогревали и скручивали вдоль. Затем брали несколько таких скрученных брусков (чаще три или шесть), сваривали их между собой и расковывали в полосу. В некоторых случаях из этих скруток плели что-то вроде косичек, которые могли состоять из разного числа прядей и иметь разную схему плетения. Косички сваривали и проковывали в полосу. Эту полосу и навивали на оправку. Затем заготовку торцевали, канал проходили разверткой, наружную поверхность сначала обтачивали на токарном станке, потом шлифовали. Процесс воронения в те времена состоял в обработке довольно сильными кислотами. В результате малоуглеродистые прутки протравливались значительно сильнее по сравнению с высокоуглеродистыми, и на поверхности ствола появлялся оригинальный мелкий рисунок, отражавший всю предшествующую схему получения полос. Обычно на дамасских стволах ширина полосы видна невооруженным глазом.

Стремительное развитие металлургии в конце XIX века привело к появлению легированных углеродистых сталей. Перспективность их использования для изготовления стволов казалась очевидной. Однако еще в первой четверти XX века многие оружейники Европы продолжали делать стволы по дамасским технологиям. Сегодня необходимо понимать, что такие стволы, хотя и являются памятниками фантастическому усердию оружейников предыдущих поколений, уступают по всем важнейшим показателям современным легированным ствольным сталям. Напомним нашим соотечественникам, что сталь 50 А и даже 50 РА, из которой и в Туле, и в Ижевске делают сегодня стволы, к легированным ствольным сталям не относятся. И еще о дамасских стволах. Спустя сто и более лет после изготовления весьма вероятно, что кузнечная сварка элементов может значительно разрушиться и прочность стволов может оказаться недостаточной для обеспечения безопасности стрельбы.

Введение в состав углеродистой стали хрома, ванадия, никеля, кремния, марганца и других элементов привело к значительному повышению важнейших свойств ствольных сталей — упругости, прочности при растяжении, поверхностной твердости, коррозионной стойкости. Более того, эти технологии позволяют получать стали с заранее заданными свойствами. Все это позволило перейти к изготовлению однородных заготовок для ружейных стволов. Этот процесс начался еще в последней трети XIX века и около полувека сосуществовал с «дамасской» технологией.

РАЗВИТИЕ ТЕХНОЛОГИИ ИЗГОТОВЛЕНИЯ РУЖЕЙНЫХ СТВОЛОВ

Новый этап начинается с отказа от стволов, получаемых из полос, и перехода к стволам, канал которых образовывался глубоким сверлением. Эта технология несравненно более производительная, но для ее реализации потребовалось решить ряд серьезных проблем, рассказать о которых нам хочется, чтобы современные читатели могли представить, какой ценой получались ружья, обладающие замечательным боем. Новая технология изготовления ствольных заготовок начинается с ковки, которая не только придает заготовке ствола внешнюю форму, приближающуюся к готовому стволу, но и обеспечивает улучшение структуры стали благодаря уменьшению зернистости заготовки. Обычно для поковки отрезают кусок круглого проката диаметром около 50 мм. Длина этой заготовки зависит от будущей длины ствола. Куска длиной 320 мм хватает, чтобы из нее вытянуть ковкой заготовку длиной 750 мм со средним диаметром 30 мм. Конечно, после ковки диаметр заготовки в области патронника заметно больше, чем у дульного среза. Здесь следует отметить, что при обычной ковке около 15% стали уходит в окалину. Кузнецы говорят, что металл «угорает».

Для снятия внутренних напряжений в откованных заготовках их нагревают до примерно 850–860 градусов и выдерживают около получаса.

Точные параметры нагрева зависят от марки ствольной стали и толщины заготовки. Задача снятия внутренних напряжений очень важна для всех стадий производства стволов. Особенно важно, чтобы не было напряжений в готовой ствольной трубке, предназначенной для образования ствольных блоков из двух или более стволов.

Дело в том, что пайка мягкими и особенно твердыми припоями требует значительного и асимметричного нагревания стволов. Неоднородно происходит и охлаждение спаянного блока. Наличие внутренних напряжений приводит к заметной деформации стволов после пайки. Более того, высокий разогрев внутренней поверхности стволов при стрельбе, особенно интенсивной, может вызвать необратимую деформацию ствола, если в нем оставались напряжения. После нормализации проводят закалку. Суть ее заключается в получении оптимальных свойств стали за счет формирования тонкой структуры металла. Любая сталь является сложной в фазовом отношении системой, содержащей как минимум две кристаллические модификации чистого железа, карбид железа, карбиды металлов-примесей и твердые растворы некоторых из этих компонентов друг в друге. Температурная обработка меняет фазовое состояние этой сложной системы и размеры отдельных фаз, что очень существенно влияет на эксплуатационные свойства. Закалка заключается в равномерном разогреве детали до температуры, зависящей от рецептуры стали, из которой она изготовлена. Заготовки из стали Ск 65, которую в Германии часто используют для стволов, нагревают до 840 градусов. После этого ее опускают в масло, имеющее комнатную температуру. Затем заготовку «отпускают», для чего ее прогревают в муфельной печи около четырех часов при температуре 580–600 градусов. Такой сложной термообработкой можно значительно влиять на твердость, вязкость, упругость и предел прочности при растяжении.

Термически обработанную заготовку тщательно рихтуют. Это делают для того, чтобы при сверлении, которое происходит при вращении заготовки, она не вибрировала. Рихтуют заготовку в горизонтальном положении при вращении, корректируя ее форму прижимными роликами. После рихтования заготовку снова подвергают нагреву для снятия внутренних напряжений, после чего торцуют с обеих сторон и снимают фаски.

После этого приступают к самому тонкому процессу в изготовлении ствола — сверлению. Глубокое сверление, особенно в длинной заготовке с низкой продольной устойчивостью, это особая песня. В оружейном деле для этого используют специальные станки, похожие на токарные. В них закрепленная заготовка вращается, а специальное сверло движется поступательно. В этом процессе две главные проблемы: увод сверла от оси заготовки и удаление стружки. Первую проблему можно решить за счет однородности структуры заготовки и относительно невысокой скорости подачи и резания, чтобы исключить вибрации заготовки. Разумеется, эти ограничения увеличивают продолжительность сверления. Проблема удаления стружки, которая иногда не только портит поверхность канала, но и даже просто заклинивает сверло, решается специальными приемами. В XIX веке применялись «ружейные сверла», которые по конструкции были близки к разверткам, то есть в основе была штанга, по всей рабочей длине которой был выбран цилиндрический сектор с углом около 100 градусов. Конструкция сверла достаточно проста и хорошо понятна из чертежа. Через небольшое отверстие в теле сверла в зону резания подается охлаждающая эмульсия, которая по желобку, параллельному оси сверла, уносит с собой образующуюся стружку. Такие станки давно стали многошпиндельными и достаточно автоматизированными. Это позволяет одному рабочему контролировать сверление на нескольких станках. Этот процесс все-таки не гарантировал высокую степень чистоты обработки канала ствола. Стружка часто была основной причиной этого. Кроме того, производительность сверления была невысокая.

В 1937 году Бургсмюллер качественно изменил схему сверления. Он предложил вертикальное расположение заготовок и направление сверления снизу вверх для лучшего удаления стружки. В качестве основы сверла он применил трубу, на рабочей головке которой были прикреплены три направляющие пластины и приварена одна режущая. Процесс резания происходит при охлаждении сжатым воздухом, который подается в зазор между поверхностью сверла и стенками образующегося отверстия. Стружка же совсем не контактировала со стенками отверстия и вместе с воздухом уносилась вниз. Значительно больший момент сопротивления скручиванию, которым обладала «труба» по сравнению с профилированной штангой, позволяет, кроме получения хороших поверхностей, использовать при сверлении более высокие скорости резания и подачи.

В 1942 году Байснер усовершенствовал этот метод. Он вернул сверлильному станку горизонтальное положение, предложил использовать масло в качестве охлаждающей жидкости и усовершенствовал сверлильную головку. Масло подавалось под давлением в зазор между сверлом и образующейся цилиндрической поверхностью и выносило стружку через центральный канал в специальный сборник. Поверхность получалась очень гладкой в некоторой мере благодаря полированию направляющими. Тем не менее после сверления канал ствола обрабатывался разверткой и шлифовался.

Перед тем как приступить к обработке наружной поверхности ствола, его рихтуют — проверяют прямолинейность оси канала и при необходимости выправляют ее с помощью винтового пресса. Проверку правильности канала осуществляют по теневым кольцам, что каждый охотник может сделать и сам. А вот процесс правки требует не только хорошего зрения, но и большого чувства металла, приходящего только с опытом. Дело в том, что ствол имеет упругость. Поэтому если под нагрузкой он выпрямился, то после ее снятия он частично вернется в исходное состояние. Опытный мастер чувствует, насколько ствол нужно «перегнуть», чтобы после снятия нагрузки он стал безукоризненно правильным.

После формирования канала ствола встает очередная непростая задача: обточить ствол снаружи на токарном станке. При этом главная трудность состоит в том, чтобы центр наружной поверхности точно совпал с центром канала ствола. Если этого не сделать, то ствольная трубка получится разностенной. Кроме того, из-за большой величины отношения длины ствола к его диаметру при токарной обработке поверхности ствола его необходимо фиксировать двумя люнетами, для каждого из которых нужно предварительно проточить шейки. Для корректного выполнения этой операции на середине длины ствола устанавливают специальную муфту, позволяющую правильно удерживать ствол за его необработанную поверхность при проточке шеек для люнетов. Когда шейки проточены, муфту можно снять и выполнить наружное обтачивание ствола по копиру. Эти токарные обработки могут привести к некоторой деформации ствола. Поэтому ствол в очередной раз контролируют по теневым кольцам и при необходимости рихтуют. Чистовое обтачивание и шлифование производится после того, как отдельно прошлифовываются шейки для люнетов. Заключительная стадия изготовления ствольных трубок — тонкое шлифование, называемое в оружейном деле хонингованием.

Существенным прогрессом в изготовлении ружейных стволов является их ковка на оправке. Конечно, оборудование для этого процесса стоит недешево. Поэтому формование стволов ковкой рентабельно только при больших объемах производства. Однако экономия средств и времени получается тоже немалой. При изготовлении стволов методом ротационной горячей ковки используют заготовки длиной

260–280 мм и диаметром около 35 мм. В ней сверлом Байснера делают сквозное отверстие диаметром 20,5 мм. Заготовку закрепляют на закаленной тщательно отполированной оправке, имеющей форму внутренней поверхности готового ствола. После электроиндукционного прогрева заготовки до необходимой температуры ее подают к зону ковки, где она, вращаясь вдоль своей оси, проходит под ударами крестообразно расположенных молотов. За полторы минуты заготовка принимает внешнюю и внутреннюю форму ствола с патронником. Закалка после такой проковки не проводится. Внешнюю форму ствола доводят токарным обтачиванием и шлифованием. Канал ствола начерно проходится разверткой. Окончательную обработку канала ствола, включая патронник и дульное сужение, проводят после сборки ствольного блока. Еще более прогрессивным методом изготовления стволов является холодная ковка на оправке. Одно из главных преимуществ — она экономит около 15% дорогой ствольной стали, уходящей в окалину при горячей ковке. Кроме того, внутренняя поверхность ствола получается точной копией оправки, так что можно получать полностью готовые стволы (с патронником, дульным сужением или нарезами). Поверхность канала ствола требует только полировки. К тому же структура холоднокованного ствола обеспечивает ему более высокие механические свойства. Правда, холодная ковка требует несколько более мощных молотов и большей продолжительности. Она длится чуть более трех минут. Внешнюю форму доводят обтачиванием и полированием. Правда, некоторые фирмы выпускают одноствольное оружие без наружного обтачивания, оставляя поверхность в таком виде, каким оно получается из-под молотов. Проверку правильности оси канала проводят и после этой технологии, и, если есть необходимость, их рихтуют. Хотя производство холоднокованых стволов дешевле, многие производители оружия предпочитают изготавливать их сверлением. Это относится не только к оружейникам-штучникам, но и производителям серийных ружей. Удивительно, но большинство из них пользуются для этого сверлами старой конструкции (штанга с удаленным цилиндрическим сектором).

Сталь 08 Х14НД содержит в своем составе 0,08% углерода, 14% хрома, менее 1,5% никеля и менее 1,5% меди.

По химическому составу стали делятся на четыре группы

Углеродистые нелегированные (С менее 0,25 — низкоуглеродистые, С=0,2 — 0,4% среднеуглеродистые, С=0,45 и выше — высокоуглеродистые).

Низколегированные В них суммарное содержание легирующих элементов не превышает 3,5%.

Среднелегированные Содержание легирующих эл-тов: 3,5% — 10,0%.

Высоколегированные Содержание легирующих эл-тов: более 10%.

Скрупулезно или деликатно

От фунтов, в которых измерялся вес старых пушечных снарядов, пошло не только исчисление калибров гладкоствольного оружия. Вес пуль современного нарезного оружия обычно указывается в гранах. Это самая мелкая из старых аптекарских мер веса, базирующихся на фунте. Латинское слово pondus означает вес, тяжесть.

1 фунт — 12 унций; 1 унция — 8 драхм; 1 драхма — 3 скрупула Отсюда наше слово скрупулезность. По-итальянски scrupolo не имеет негативного оттенка. Оно обозначает деликатность, совестливость.

1 скрупул — 20 гранов. Granum — по-латински зерно. В основе исчисления веса современных пуль лежит

1 фунт английский — 0,453592 кг.

В результате 1 гран равен 64,8 мг.

Маркировка стальных отливок

Простые углеродистые стали обозначаются двузначным числом, указывающим среднее содержание углерода в сотых долях процента.

Например:

сталь 15 — с содержанием углерода 0,15%.

В сталях основные легирующие элементы обозначаются буквами: А — азот, Б — ниобий, В — вольфрам, Г — марганец, Д — медь, К — кобальт, М — молибден, Н — никель, П — фосфор, Р — бор, С — кремний, Т — титан, Ф — ванадий, Х —хром, Ц — цирконий, Ю — алюминий. Цифры поле буквенного обозначения легирующего элемента — процентное содержание его в стали.

Если оно (содержание) менее 1,5%, цифры за буквенным индексом не ставятся.

Технологии

В современных оружейных производствах применяются специальные ствольные токарные станки с компьютерным программированием и с цифровой индикацией процесса. Они снабжены подвижными гидравлическими люнетами и оппозитно расположенными резцами. Такая схема обточки исключает отжимание ствола резцом и позволяет получать ствол с абсолютно равной толщиной стенок в любом сечении.

Владимир Тихомиров 18 января 2012 в 00:00

www.ohotniki.ru