Тепловизор. Инфракрасная термография. Принцип работы и устройство тепловизора. Матрица тепловизора


Тепловизионная матрица: etoonda

Россия стала четвертой в мире после США, Франции и Китая, сумевшей создать собственную тепловизионную матрицу.

В России конечно способны были делать ПЗС матрицы — сомнений нет. А вот сделать неохлаждаемую для тепловизора — это и вправду могут немногие.

Говорят, для Thales Group это чорный день, французы нам их поставляли с 90-х, если не раньше, и то не везде тепловизоров хватало. Утверждают, что наживались, понятное дело, безбожно. Зато теперь сами делаем.

Научно-производственное предприятие «Исток» и Центральный научно-исследовательский институт «Циклон» (входит в состав холдинга «Росэлектроника») готовятся к серийному производству неохлаждаемых матричных микроболометрических приемников, составляющих основу тепловизионных приборов, позволяющих экипажам боевых машин обнаруживать цели ночью, в сложных метеоусловиях, в условиях задымления, пыли или тумане, а также при применении искусственных помех в виде прямого света фар и прожекторов. Как рассказали на предприятии, созданные на базе отечественных матриц тепловизоры пойдут на вооружение новых танков «Армата», БТР «Курганец», новых бронеавтомобилей семейства «Тайфун», а также будут использоваться в прицелах для стрелкового оружия и переносных зенитно-ракетных комплексов «Игла» и «Верба».

— Производство отечественных неохлаждаемых матричных микроболометрических приемников — это важная технология для поддержания безопасности государства и обеспечения гражданского сектора современным уровнем технического зрения, — сообщил представитель ЦНИИ «Циклон» Алексей Горбунов. — Это возможность не только сделать нашу военную технику по-настоящему всепогодной, применение высокоточного оружия независимым от обстановки на поле боя, но и внести серьезный вклад в развитие гражданского сектора. Наши матрицы могут использоваться в приборах теплового аудита, медицинской техники по раннему выявлению рака, дистанционному обнаружению болезней, дефектоскопии и во многом другом оборудовании, связанном с обнаружением теплового излучения и его идентификацией.

По словам специалиста, Россия стала четвертой страной в мире после США, Франции и Китая, сумевшей создать собственную тепловизионную матрицу.

— Получены образцы, соответствующие по параметрам мировому уровню. В стране создается производство с объемом выпуска до 10 тыс. штук в год, — подчеркнул Горбунов.

Как рассказал военный эксперт в области бронетехники Сергей Суворов, тепловизионная камера — одна из самых важных деталей современной боевой машины. В отличие от других прицелов тепловизор способен работать в полной темноте и при нулевой видимости. При этом не только видеть цель, но и наводить на нее оружие.

— Тепловизор включает в себя не только матрицу, но еще и оптическую систему, и программное обеспечение, способное обработать и визуализовать на экране картинку, в том числе и обнаруженную цель, — объяснил Сергей Суворов. — До последнего времени мы закупали французские матрицы Thales Catherine-FC и Sagem Matiz, на базе которых были созданы тепловизионный прицельный комплекс «Эсса» для танков Т-90 или «Плиса» для Т-80.

Как отмечает Сергей Суворов, «Эсса» позволяет искать, обнаруживать и распознавать цели в любое время суток на дальности до 4 км. Время готовности системы к работе — не более пяти минут. И может непрерывно работать не менее шести часов при температурах от минус 50 до плюс 55 градусов.

— Российские прицелы с одной и той же матрицей оказались лучше французских, — уточнил эксперт. — Так как у нас в стране оказалась лучше технология изготовления линз и программного обеспечения. Санкции в отношении страны внесли свои коррективы в международную кооперацию и сделали невозможным массовое производство тепловизионных камер на основе импортных комплектующих.

Производство отечественных матриц могло начаться еще в 2010 году, но именно из-за «французского» контракта внедрение собственных разработок постоянно откладывалось. Сегодня Минобороны готово заказывать не только тепловизионные комплексы для бронетехники, но и прицелы для стрелкового вооружения и переносных зенитно-ракетных систем, в которых как раз и применяются неохлаждаемые матричные микроболометрические приемники. Так, для ПЗРК «Игла» и «Верба» созданы прицелы «Маугли» и «Маугли-1». На всю бронетехнику от «Арматы», «Курганца» и «Тайфунов» и даже кораблей будут ставиться «Рогатки». Оборудование, как следует из данных интернет-сайта ЦНИИ «Циклон», способно обнаруживать ростовую фигуру человека или бронетехнику на дальностях от 2 тыс. до 9 тыс. м, что полностью соответствует дальности применения вооружения, имеющегося в составе танка или БТР. Время приведения в рабочее состояние не превышает 30 секунд.

— Оборудование, создаваемое в стране, это уже не просто прицелы, это комплексные системы как наведения оружия, так и ночного вождения техники, — отметил Сергей Суворов. — То есть такие комплексы позволяют продолжать движение техники даже в том случае, если экипаж бронемашины потерял возможность лично наблюдать за ситуацией через остекление кабины.

Привет . Добавляй в друзья )

etoonda.livejournal.com

Матрица тепловизора

    Матрица представляет собой микросхему с набором специальных диодов, отличающихся светочувствительностью, и свойством менять сопротивление в зависимости от интенсивности инфракрасных лучей. А размер матрицы напрямую определяет четкость тепловой фотографии объекта, так как чем больше размер ИК детектора тем больше чувствительных элементов воспринимают тепловое излучение. Чем больше разрешение матрицы тем больше температурных точек можно отследить и соответственно получается более четкая картинка.

    Например тепловизор testo 875 с матрицей 160x120 пикселей отображает тепловое изображение из 19200 точек, а модель тепловизора FLIR E60bx благодаря большей матрице 320x240 пикселей отображает 76800 значений. Чем выше разрешение там качественнее изображение, и тем дороже стоит сам тепловизор.

    Благодаря современным технологиям матрица имеет компактные размеры и отличается низким энергопотреблением. Для получения качественной картинки матрицу необходимо охлаждать. Полупроводниковые матрицы охлаждают различными способами, к примеру, жидким азотом или при помощи холодильника Стирлинга. Самые лучшие тепловизоры с охлаждаемыми датчиками могут работать на частоте до 20 кГц и измерять температуру с точностью до 0.018°, что позволяет детально рассмотреть даже очень скоротечные процессы.

    Необходимость охлаждения делает тепловизоры дорогими, громоздкими и не всегда безопасными, тем самым сильно сужая область их применения, поэтому сегодня широкое распространение получили аппараты с совершенно другим типом матриц — микроболометрических. В современных тепловизорах ПЗС-матрица заменена на микроболометрическую, которая не требует охлаждения. Изменение сопротивления элементов такой микросхемы фиксируется с большой точностью практически во всем диапазоне ИК-излучения.

    Первый коммерческий тепловизор серии Thermovision 500, в котором приемник излучения работал при комнатной температуре, был выпущен шведской фирмой AGEMA Infrared Systems.

    Важным, с точки зрения оптики, но не столько как разрешение матрицы есть оптическое разрешение. Оптическое разрешение – фактически отношение расстояния от прибора до объекта к диаметру пятна диагностики. В плане оптического разрешения важно что бы весь объект попадал в поле зрения. Фактически оно определяет с какого расстояния можно делать замеры объектов определенного размера. Но в то же время, оптическое разрешение никак не влияет на качество изображения и количество регистрируемых температурных точек. Эти показатели определяются разрешением матрицы ИК датчика.

analyztepla.ru

Теплонадзор » Классификация тепловизоров

Классифицировать тепловизоры можно по самым различным критериям. Не претендуя на полноту классификации, приведу основные параметры, по которым современные тепловизоры можно разделить на классы в зависимости от их конструкции или применения.

По принципу получения изображения

1

Сканирующие тепловизоры (тепловизоры с оптико-механическим сканированием). Термограмма получается сканированием пространства. Система из вращающихся и качающихся зеркал и призм поочередно экспонирует на приемник излучение от каждой точки наблюдаемого пространства. Приемник излучения может быть одноэлементным, линейкой чувствительных элементов или небольшой матрицей.  Преимуществом сканирующих систем считают то, что измерение в каждой точке термограммы получено одним датчиком (в одноэлементной системе). К недостаткам можно отнести наличие движущихся деталей и относительно низкую скорость формирования термограммы. В качестве примера сканирующих тепловизоров можно привести модели AGEMA 470 (снят с производства), ИРТИС.

2

Матричные тепловизоры (тепловизоры с матрицей в фокальной плоскости, FPA — focal plane array). В фокальной плоскости оптической системы таких тепловизоров установлен многоэлементный приемник ик-излучения — матрица. Каждая точка (пиксель) в термограмме получается как результат преобразование ик-излучения соответствующим детектором матрицы. Размер матрицы и получаемой термограммы в современных тепловизорах сильно отличаются. В дешевых моделях начального уровня устанавливают матрицы от 60х60 точек до 180х180 точек. В профессиональных коммерческих тепловизорах устанавливают матрицы 640х480 точек. Размер матрицы сильно влияет на стоимость тепловизора, так как матрица и ик-оптика являются самым дорогими элементами тепловизоров. Большинство современных тепловизоров являются матричными, как пример можно привести модели FLIR Р640 и FLIR T640 (установлены матрицы размером 640х480 точек).

 

По спектральному диапазону

1

Коротковолновые тепловизоры. Рабочий спектральный диапазон ориентировочно от 3 мкм до 5 мкм. Более правильно называть эти тепловизоры средневолновыми, так как они работают в средневолновом ИК-диапазоне, соответствующем окну прозрачности атмосферы ориентировочно от 3 мкм до 5 мкм. Коротковолновыми их стали называть по отношению к длинноволновым моделям тепловизоров, так как в широкой практике тепловизионного контроля используются только эти два спектральных диапазона. Линзовые объективы коротковолновых тепловизоров изготавливают из кремния. Это охлаждаемые тепловизионные камеры (азотное охлаждение, термоэлектрическое, микрохолодильник Стирлинга). К коротковолновым тепловизорам относятся, к примеру, FLIR GasFindIR и FLIR SC7000.

2

Длинноволновые тепловизоры. Рабочий спектральный диапазон от 8 мкм до 14 мкм. Матрицы таких тепловизоров не требуют охлаждения. Линзовые объективы длинноволновых тепловизоров изготавливают из германия. Большинство коммерческих тепловизоров являются длинноволновыми, например модели FLIR Р640, FLIR T640.

 

По типу исполнения

1

Стационарные тепловизоры. Предназначены для стационарной установки, наблюдения за фиксированной зоной и передачи информации по линии связи. В системах безопасности могут устанавливаться на привод наведения. В промышленности стационарные тепловизоры обычно следят за температурным режимом движущихся объектов (например, на конвейере) или поверхностей (например, вращающихся печей).  Примером стационарных тепловизоров являются модели FLIR A-series.

2

Переносные (портативные) тепловизоры.Применяются для тепловизионной съемки в строительстве, энергетике, промышленности и других отраслях. Современные модели имеют моноблочный корпус, который содержит все системы тепловизора: оптику, матрицу, электронику, экран, органы управления, носитель для записи термограмм, аккумулятор. Портативные теплолвизоры также оснащаются встроенными фотоаппаратами, лазерными целеуказателями, лампами подсветки, аудио-гарнитурами. Портативные тепловизоры имеют малый вес от 350 грамм до 2 кг. Автономное аккумуляторное питание обеспечивает работу до 8 часов.

 

По возможности измерения температуры

1

Наблюдательные тепловизоры. Наблюдательные тепловизоры делают тепловое излучение объектов видимым, представляя интенсивность ИК-излучения с помощью выбранной цветовой шкалы (палитры). На сайте есть отдельная статья об наблюдательных тепловизорах.

2

Измерительные тепловизоры. Предназначены для визуализации температурных полей и бесконтактного измерения температуры поверхностей. На сайте есть отдельная статья об измерительных тепловизорах.

teplonadzor.ru

Россия сумела создать собственную тепловизионную матрицу

— Производство отечественных неохлаждаемых матричных микроболометрических приемников — это важная технология для поддержания безопасности государства и обеспечения гражданского сектора современным уровнем технического зрения, — сообщил представитель ЦНИИ «Циклон» Алексей Горбунов.

— Это возможность не только сделать нашу военную технику по-настоящему всепогодной, применение высокоточного оружия независимым от обстановки на поле боя, но и внести серьезный вклад в развитие гражданского сектора. Наши матрицы могут использоваться в приборах теплового аудита, медицинской техники по раннему выявлению рака, дистанционному обнаружению болезней, дефектоскопии и во многом другом оборудовании, связанном с обнаружением теплового излучения и его идентификацией. По словам специалиста, Россия стала четвертой страной в мире после США, Франции и Китая, сумевшей создать собственную тепловизионную матрицу.

— Получены образцы, соответствующие по параметрам мировому уровню. В стране создается производство с объемом выпуска до 10 тыс. штук в год, — подчеркнул Горбунов. Как рассказал военный эксперт в области бронетехники Сергей Суворов, тепловизионная камера — одна из самых важных деталей современной боевой машины. В отличие от других прицелов тепловизор способен работать в полной темноте и при нулевой видимости. При этом не только видеть цель, но и наводить на нее оружие.

— Тепловизор включает в себя не только матрицу, но еще и оптическую систему, и программное обеспечение, способное обработать и визуализовать на экране картинку, в том числе и обнаруженную цель, — объяснил Сергей Суворов.

— До последнего времени мы закупали французские матрицы Thales Catherine-FC и Sagem Matiz, на базе которых были созданы тепловизионный прицельный комплекс «Эсса» для танков Т-90 или «Плиса» для Т-80. Как отмечает Сергей Суворов, «Эсса» позволяет искать, обнаруживать и распознавать цели в любое время суток на дальности до 4 км. Время готовности системы к работе — не более пяти минут. И может непрерывно работать не менее шести часов при температурах от минус 50 до плюс 55 градусов.

— Российские прицелы с одной и той же матрицей оказались лучше французских, — уточнил эксперт.

— Так как у нас в стране оказалась лучше технология изготовления линз и программного обеспечения. Санкции в отношении страны внесли свои коррективы в международную кооперацию и сделали невозможным массовое производство тепловизионных камер на основе импортных комплектующих. Производство отечественных матриц могло начаться еще в 2010 году, но именно из-за «французского» контракта внедрение собственных разработок постоянно откладывалось. Сегодня Минобороны готово заказывать не только тепловизионные комплексы для бронетехники, но и прицелы для стрелкового вооружения и переносных зенитно-ракетных систем, в которых как раз и применяются неохлаждаемые матричные микроболометрические приемники. Так, для ПЗРК «Игла» и «Верба» созданы прицелы «Маугли» и «Маугли-1». На всю бронетехнику от «Арматы», «Курганца» и «Тайфунов» и даже кораблей будут ставиться «Рогатки». Оборудование, как следует из данных интернет-сайта ЦНИИ «Циклон», способно обнаруживать ростовую фигуру человека или бронетехнику на дальностях от 2 тыс. до 9 тыс. м, что полностью соответствует дальности применения вооружения, имеющегося в составе танка или БТР. Время приведения в рабочее состояние не превышает 30 секунд.

— Оборудование, создаваемое в стране, это уже не просто прицелы, это комплексные системы как наведения оружия, так и ночного вождения техники, — отметил Сергей Суворов. — То есть такие комплексы позволяют продолжать движение техники даже в том случае, если экипаж бронемашины потерял возможность лично наблюдать за ситуацией через остекление кабины.

fishki.net

Тепловизионные матрицы и объективы в Москве и Санкт-Петербурге

Матрица и объектив – это наиболее сложные элементы тепловизионных приборов, составляющие порядка 90% стоимости от всего устройства.

Матрица представляет собой сложное устройство, изготовленное при использовании редких полупроводников (примесный кремний и германий). В современных тепловизорах используются двумерные многоэлементные фокально-плоскостные матрицы (FPA - focal-plane array). Существуют охлаждаемые и неохлаждаемые типы матриц. Охлаждаемые обладают большей точностью, однако они значительно дороже и сложнее в обслуживании.

Объектив также имеет очень важное значение при производстве тепловизоров. От его характеристик, так же как и от характеристик матрицы, во многом зависит точность тепловизора, дальность обнаружения теплового излучения, угол работы устройства и т. д. Объективы для тепловизионного оборудования так же очень сложны в производстве. Линза такого объектива не может быть изготовлена из стекла, так как оно не способно пропускать инфракрасное излучение. Поэтому линзы для тепловизоров изготавливаются из очень редких материалов, преимущественно из германия.

Большинство матриц и объективов, используемых при производстве тепловизионных приборов, выпускаются за рубежом. Существует и ряд отечественных разработок в этой сфере, которые используются, в частности, в тепловизорах «НПО «АМБ». Существуют некоторые экспортные ограничения на матрицы и объективы, однако это касается лишь сверхточных устройств, которые используются вооруженными силами государств. На ввоз матриц для тепловизоров, которые используются для обеспечения безопасности на частных объектах, ограничений нет.

Будучи довольно чувствительными к физическим воздействиям, матрица и объектив помещаются в специальный защитный корпус. В зависимости от условий использования, он может обладать рядом дополнительных преимуществ (высокая степень герметичности, устойчивость к вибрациям, устойчивость к неблагоприятным погодным условиям и т. д.)

 

teplovisor.su

Тепловизор. Инфракрасная термография. Принцип работы и устройство тепловизора.

Инфракрасная Термография

Инфракрасная  термография – это наука использования электронно - оптических устройств для регистрации и измерения излучения и сопоставления его с температурой поверхностей. Излучение – это передача тепла в виде лучистой энергии (электромагнитных волн) без промежуточной среды, используемой для передачи. Современная инфракрасная  термография использует электронно-оптические устройства для измерения потока излучения и вычисления температуры  поверхности обследуемых конструкций или оборудования.

Люди всегда могли чувствовать инфракрасное излучение. Нервные окончания человеческой кожи могут регистрировать изменения температуры величиной ±0,009°C (0,005°F). Несмотря на свою высокую чувствительность, нервные окончания человека совершенно не подходят для неразрушающего теплового контроля.

Даже если бы люди обладали такой же способностью чувствовать тепло, как животные, которые могут находить теплокровную добычу в темноте, все равно потребовался бы более совершенный инструмент для обнаружения тепла. Поскольку люди имеют физиологические ограничения способности чувствовать тепло, были разработаны сверхчувствительные к тепловому излучению механические и электронные устройства. Эти устройства стали обычными для проведения теплового контроля при решении бесчисленного количества задач.

История развития инфракрасной технологии

Слово «инфракрасный» означает «за красным», что указывает на место, которое занимают эти длины волн в спектре электромагнитного излучения. Термин «термография» происходит от двух корней, которые означают «температурное изображение». Корни термографии уходят к немецкому астроному, сэру Вильяму Гершелю, который в 1800 г. проводил эксперименты с солнечным светом.

Тепловое изображение остаточного тепла, переданного рукой при прикосновении к поверхности окрашенной стены, легко обнаружить с помощью тепловизора.

 

Гершель открыл инфракрасное излучение, когда пропускал солнечный свет через призму, и располагал чувствительный ртутный термометр на различных цветах для измерения температуры. Гершель обнаружил, что при переходе за красный цвет в область, известную как «невидимое тепловое излучение», температура повышалась. «Невидимое тепловое излучение» лежало в области электромагнитного спектра, которая сейчас называется инфракрасным излучением. оно так же является электромагнитным излучением.

Через двадцать лет, немецкий физик Томас Зеебек открыл термоэлектрический эффект. Это привело к открытию итальянским физиком Леопольдо Нобили термобатареи на основе ранних версий термопар, в 1829 г. Это простое контактное устройство основано на следующем явлении. При изменении температуры между двумя разнородными металлами появлялась разность потенциалов. Партнер Нобили, Македонио Меллони, вскоре превратил термобатарею в термостолбик (последовательное расположение термобатарей) и сфокусировал на нем тепловое излучение таким образом, что смог обнаруживать тепло тела с расстояния 9,1 м (30 футов).

В 1880 г., американский астроном Сэмюел Лэнгли использовал болометр для обнаружения тепла тела коровы с расстояния более 300 м (1000 футов). В болометре измеряется не разность потенциалов, а изменение электрического сопротивления, связанное с изменением температуры. Сын сэра Вильяма Гершеля, сэр Джон Гершель, используя устройство, называемое эвапорографом, получил первое инфракрасное изображение в 1840 г. формирование теплового изображения происходило за счет различной скорости испарения тонкой пленки масла, и его можно было увидеть в отраженном свете.

Тепловизор – это устройство, которое получает тепловое изображение в инфракрасной области спектра без прямого контакта с оборудованием. См. рис. 1-1.

Рис. 1-1. Тепловизор – это прибор,  который  получает тепловое изображение в инфракрасной области спектра без непосредственного контакта с оборудованием.

 

Первые модели тепловизоров были построены на фоторезистивных приемниках излучения. С 1916 по 1918 гг. американский изобретатель Теодор Кейс экспериментировал с фотосопротивлениями для получения сигнала не за счет нагрева, а благодаря прямому взаимодействию с фотонами. В результате был получен более быстрый, более чувствительный приемник излучения на основе эффекта фотопроводимости. В течение 1940-1950-х гг. развитие тепловизионной технологии было связано с возрастающим применением для военных целей. Немецкие ученые обнаружили, что при охлаждении фоторезистивного приемника излучения, его характеристики улучшаются.

Тепловизоры для невоенных целей применялись не только до 1960-х гг. Хотя ранние тепловизионные системы были громоздкими, медленными, имели низкую разрешающую способность, их использовали в промышленности для обследования систем передачи и распределения электроэнергии. В 1970-х гг. достижения в области военных применений привели к появлению первых переносных систем, которые можно было использовать для диагностики зданий и неразрушающего контроля.

В 1970-х гг. тепловизионные системы были прочными и надежными, однако качество изображений было низким по сравнению с современными тепловизорами. К началу 1980-х гг., тепловидение широко применялось в медицине, в основных отраслях промышленности, а так же для обследования зданий. Тепловизионные системы калибровались таким образом, чтобы можно было получать полностью радиометрические изображения, чтобы радиометрические температуры можно было измерить по всему изображению. Радиометрическое изображение – это тепловое изображение, содержащее рассчитанные значения температур для всех точек на изображении.

ПОЛЕЗНО ЗНАТЬ

Первые тепловизоры отображали тепловизионное изображение с помощью черно-белой электронно-лучевой трубки. Запись изображения можно было осуществлять только с помощью фотографии или магнитной ленты.

 

На замену сжатому или сжиженному газу, который использовался для охлаждения тепловизоров, пришли более надежные улучшенные устройства охлаждения. Так же были разработаны и широко применялись менее дорогие тепловизионные системы на основе пировидиконов (пироэлектрических видиконных трубок). Хотя они не были радиометрическими, тепловизионные системы на основе пировидиконов имели небольшой вес, были переносными и работали без охлаждения.

В конце 1980-х гг. военные сделали доступными  для широкого применения матричные приемники излучения (матрицы в фокальной плоскости, FPA). Матрицы в фокальной плоскости состоят из массива (обычно прямоугольного) инфракрасных приемников излучения, расположенных в фокальной плоскости объектива. См. Рис. 1-2.

Рис. 1-2. Матричный приемник излучения (матрица в фокальной плоскости, FPA) – это устройство получения изображения, состоящее из массива (обычно прямоугольного) чувствительных к излучению пикселей, расположенных в фокальной плоскости объектива.

 

Это был значительный прогресс по сравнению со сканирующими приемниками излучения, которые использовались с самого начала. Это привело к повышению качества изображения и пространственного разрешения. Типичные матричные приемники излучения современных тепловизоров имеют размер от 16х16 до 640х480 пикселей. Таким образом, пиксель является самым маленьким отдельным элементом матричного приемника излучения, который может улавливать инфракрасное излучение. Для специальных задач существуют приемники излучения, размер которых превышает 1000х1000 элементов. Первое число представляет собой количество вертикальных колонок, а второе – количество горизонтальных линий, отображаемых на дисплее. Например, матрица размером 160х120 элементов в сумме имеет 19200 пикселей (160 пикселей х 120 пикселей = 19200 пикселей всего).

Развитие технологии матриц в фокальной плоскости, использующих различные типы приемников излучения, далеко шагнуло, начиная с 2000 г. Длинноволновые тепловизоры – это тепловизоры, которые чувствительны к инфракрасному излучению в диапазоне длин волн от 8 до 15 мкм. Микрон (мкм) – это единица измерения длины, равная одной тысячной миллиметра (0,001 м). Средневолновые тепловизоры – это тепловизоры, чувствительные к инфракрасному излучению в диапазоне длин волн от 2,5 мкм до 6 мкм. В настоящее время существуют как длинноволновые, так и средневолновые полностью радиометрические тепловизионные системы, часто с функцией наложения изображений и температурной чувствительностью 0,05 °С (0,09°F) и менее.

За прошедшее десятилетие стоимость таких систем снизилась больше чем в десять раз, а качество значительно повысилось. Кроме того, значительно возросло использование программного обеспечения для обработки изображений. Практически все современные инфракрасные системы используют программное обеспечение для облегчения анализа и подготовки отчетов. отчеты можно быстро создать и отправить в электронном виде через интернет, либо сохранить в одном из широко используемых форматов, таких, как PDF, а так же записать на одном из цифровых устройств хранения данных различных типов.

 

Принципы работы тепловизоров

Полезно иметь общее представление о том, как работают тепловизионные системы, поскольку для термографистов чрезвычайно важно учитывать пределы возможностей оборудования.

Это позволяет более точно выявлять и анализировать возможные проблемы. Тепловизоры предназначены для регистрации инфракрасного излучения, которое испускается объектами. См. Рис. 1-3. Объект обследуется с помощью тепловизора.

Инфракрасное излучение фокусируется с помощью оптики тепловизора на приемнике излучения, который выдает сигнал, обычно в виде изменения напряжения или электрического сопротивления. Полученный сигнал регистрируется электроникой тепловизионной системы. Сигнал, который дает тепловизор, превращается в электронное изображение (термограмму), которое отображается на экране дисплея. Термограмма – это изображение объекта, обработанное электроникой для отображения на дисплее таким образом, что различные градации цвета соответствуют распределению инфракрасного излучения по поверхности объекта. Таким образом, термографист может просто увидеть термограмму, которая соответствует тепловому излучению, приходящему с поверхности объекта.

Рис. 1-3. Объект обследуется с помощью тепловизора. Назначение тепловизора – регистрация инфракрасного излучения, испускаемого объектом

 

Термограмма – это обработанное электроникой изображение на дисплее, где различные градации цвета соответствуют распределению инфракрасного излучения по поверхности объекта.

 

Компоненты тепловизора

Обычный тепловизор имеет несколько общих для всех подобных приборов компонентов, включающих объектив, крышку объектива, дисплей, приемник излучения и обрабатывающую электронику, органы управления, устройства хранения данных, а так же программное обеспечение для обработки данных и создания отчетов. Эти компоненты могут изменяться в зависимости от типа и модели тепловизионной системы. См. Рис. 1-4.

Объективы. Тепловизоры имеют как минимум один объектив. Объектив  тепловизора собирает инфракрасное излучение и фокусирует его на приемнике излучения. Приемник излучения выдает сигнал и создает электронное (тепловое) изображение или термограмму. Объектив тепловизора используется для того, чтобы собрать и сфокусировать приходящее инфракрасное излучение на приемнике излучения. объективы большинства длинноволновых тепловизоров изготовлены из германия. Пропускание объективов улучшается за счет тонкопленочных просветляющих покрытий.

ПОЛЕЗНО ЗНАТЬ

Из-за постоянной необходимости экономить энергоресурсы, муниципалитеты и правительственные агентства производят авиационную инфракрасную съемку с помощью военных авиационных тепловизионных систем. Такая съемка необходима для того, чтобы общины, жители и коммерческие организации могли получить информацию о тепловых потерях в зданиях.

Рис. 1-4. Обычные тепловизоры имеют несколько  общих компонентов, к которым относятся объектив,  крышка  объектива, дисплей, органы  управления  и ручка с ремешком.

Так же тепловизоры обычно имеют футляр для переноски и хранения прибора, программного обеспечения и другого вспомогательного оборудования для использования в полевых условиях.

Дисплеи. Тепловое изображение отображается на жидкокристаллическом дисплее (ЖКД), расположенном на тепловизоре. Дисплей должен иметь большой размер и высокую яркость, чтобы изображение на нем можно было легко увидеть в различных условиях освещенности в различных местах работы. На дисплее часто отображается дополнительная информация, такая как уровень заряда аккумулятора, дата, время, температура объекта (в °F, °C, или K), видимое изображение и цветовая шкала температур. См. Рис. 1-5.

Рис.  1-5.  Тепловое  изображение отображается на жидкокристаллическом дисплее (ЖКД) тепловизора.

 

Приемник излучения и схемы обработки сигнала. Приемник излучения и схемы обработки сигнала используются для превращения инфракрасного излучения в полезную информацию. Тепловое излучение от объекта фокусируется на приемнике излучение, который обычно изготовлен из полупроводниковых материалов. Тепловое излучение генерирует измеряемый сигнал на выходе приемника излучения. Сигнал обрабатывается электронными схемами внутри тепловизора, чтобы на дисплее прибора появилось тепловое изображение.

Органы управления. С помощью органов управления можно выполнить разнообразные электронные настройки для улучшения теплового изображения на дисплее. В электронном виде изменяются такие настройки, как диапазон температур, тепловой уровень и диапазон, цветовая палитра и настройки слияния изображения. Так же можно установить значение коэффициента излучения и отраженной фоновой температуры. См. Рис. 1-6.

Рис. 1-6. С помощью органов управления можно изменить значение необходимых переменных, таких как диапазон температур, уровень и ширина диапазона, а так же другие настройки.

 

Устройства хранения данных. Электронные цифровые файлы, содержащие тепловые изображения и дополнительные данные, сохраняются на различных типах электронных карт памяти или устройств хранения и передачи данных. Многие инфракрасные тепловизионные системы так же позволяют сохранять дополнительные голосовые и текстовые данные, а так же соответствующее видимое изображение, полученное с помощью встроенной камеры, работающей в видимом спектре.

Программное обеспечение для обработки данных и создания отчетов. Программное обеспечение, которое используется с большинством современных тепловизионных систем, является функциональным и удобным для пользователя. Цифровые тепловые и видимые изображения импортируются на персональный компьютер, где их можно просмотреть с использованием различных цветовых палитр, произвести другие настройки всех радиометрических параметров, а так же воспользоваться функциями анализа. Обработанные изображения можно вставить в шаблоны отчетов и либо отправить на принтер, либо сохранить в электронном виде, или отправить заказчику через интернет.

www.eti.su

«Россия стала четвертой страной, сумевшей создать собственную тепловизионную матрицу» в блоге «Производство»

Предприятие «Исток» и ЦНИИ «Циклон» (входит в холдинг «Росэлектроника») занимаются подготовкой серийного производства «неохлаждаемых матричных микроболометрических приемников», составляющих основу тепловизионных приборов, сообщает представитель научно-исследовательского института Алексей Горбунов.

По его словам, «Россия стала четвертой страной в мире после США, Франции и Китая, сумевшей создать собственную тепловизионную матрицу».

«Получены образцы, соответствующие по параметрам мировому уровню. В стране создается производство с объемом выпуска до 10 тыс. штук в год», — сообщил Горбунов.

Как отметил военный эксперт в области бронетехники Сергей Суворов, «тепловизионная камера — одна из самых важных деталей современной боевой машины, и в отличие от других прицелов тепловизор способен работать в полной темноте и при нулевой видимости».

«Тепловизор включает в себя не только матрицу, но еще и оптическую систему, и программное обеспечение, способное обработать и визуализовать на экране картинку, в том числе и обнаруженную цель. До последнего времени мы закупали французские матрицы Thales Catherine-FC и Sagem Matiz, на базе которых были созданы тепловизионный прицельный комплекс „Эсса“ для танков Т-90 или „Плиса“ для Т-80», — пояснил он.

«Российские прицелы с одной и той же матрицей оказались лучше французских, — уточнил эксперт. — Так как у нас в стране оказалась лучше технология изготовления линз и программного обеспечения.»

«Оборудование, создаваемое в стране, это уже не просто прицелы, это комплексные системы как наведения оружия, так и ночного вождения техники. То есть такие комплексы позволяют продолжать движение техники даже в том случае, если экипаж бронемашины потерял возможность лично наблюдать за ситуацией через остекление кабины», — добавил Суворов.

Справка газеты: «Производство отечественных матриц могло начаться еще в 2010 году, но именно из-за „французского“ контракта внедрение собственных разработок постоянно откладывалось. Сегодня Минобороны готово заказывать не только тепловизионные комплексы для бронетехники, но и прицелы для стрелкового вооружения и ПЗРК, в которых как раз и применяются неохлаждаемые матричные микроболометрические приемники. Так, для ПЗРК „Игла“ и „Верба“ созданы прицелы „Маугли“ и „Маугли-1“. На всю бронетехнику от „Арматы“, „Курганца“ и „Тайфунов“ и даже кораблей будут ставиться „Рогатки“».

sdelanounas.ru