Летательный аппарат. История изобретения. Летательный аппарат


Виды летательных аппаратов. Классификация летательных аппаратов.

 

Когда приступают к классификации предметов или явлений, то ищут основные, наиболее общие черты, свойства, которые служат доказательством их родства. Наряду с этим изучают и такие признаки, которые резко отличали бы их друг от друга.

Если мы, следуя этому принципу, начнем классифицировать современные летательные аппараты, то прежде всего встанет вопрос: какие же признаки или свойства летательных аппаратов считать наиболее важными?

Может быть, можно классифицировать их, исходя из материалов, из которых изготовлены аппараты? Да, можно, но это будет мало наглядно. Ведь из разных материалов можно сделать одно и то же. Алюминий, сталь, дерево, полотно, резина, пластмассы в тон или иной степени применяются при изготовлении н самолетов, и вертолетов, н дирижаблей, и воздушных шаров.

Может быть основой для классификации летательных аппаратов избрать: когда и кем сделан аппарат впервые? Можно классифицировать в историческом плане — это вопрос важный, но тогда под одну рубрику попадут несхожие между собой по многим признакам аппараты, предложенные в одно время и в одной стране.

 

Очевидно, не эти признаки для классификации нужно считать наиболее важными.

Ввиду того что летательные аппараты предназначены для перемещения в воздушной среде, их принято подразделять на аппараты легче воздуха и аппараты тяжелее воздуха. Итак, основой классификации летательных аппаратов является их вес по отношению к воздуху.

Мы видим, что к аппаратам легче воздуха относятся дирижабли, воздушные шары и стратостаты. Они поднимаются и держатся в воздухе за счет наполнения их легкими газами. К аппаратам тяжелее воздуха принадлежат самолеты, планеры, ракеты и винтокрылые аппараты.

Самолет и планер поддерживаются в воздухе подъемной силой, создаваемой крыльями; ракеты удерживаются в воздухе силой тяги, развиваемой ракетным авигателем, а винтокрылые аппараты — подъемной силой несущего винта. Существуют (пока в проектах) аппараты, занимающие промежуточное положение между самолетами и винтокрылыми аппаратами, самолетами и ракетами. Это так называемые преобразуемые самолеты, или конверто-планы, которые должны объединить с себе положительные свойства как тех, так и других и сочетать огромные скорости полета с возможностью висения в воздухе, возможностью взлетать без разбега и садиться без пробега. 

Вертолет, как и автожир, относится к винтокрылым летательным аппаратам. Их различие состоит в том, что несущий винт автожира не связан с двигателем и может свободно вращаться.

Несущий винт вертолета (или несколько несущих винтов) в отличие от несущего винта автожира в процессе взлета, полета и посадки приводится во вращение двигателем и служит как для создания подъемной силы, так и тяги. Создаваемая винтом аэродинамическая сила используется как для поддержания вертолета в воздухе, так и для его движения вперед Кроме того, несущий винт является также органом управления вертолетом.

Если у самолета тягу создает воздушный винт или реактивный двигатель, подъемную силу — крылья, а органами управления служат рули и элероны, то у вертолета все эти функции выполняет несущий винт. Из этого становится понятным, насколько важно значение несущего винта на вертолете.

Вертолеты отличаются друг от друга по количеству несущих винтов, по их расположению, по способу привода вращения. В соответствии с этими признаками и разделены вертолеты, изображенные.

Гражданская авиация

Военная авиация

avia.pro

Первые летательные аппараты | Интересные факты

Ещё в древние времена люди мечтали подняться в воздух и научиться летать, подобно птицам. История донесла до нас немало свидетельств попыток различных людей смастерить крылья и полетать. Так, в 1020 г. английский монах Эйлмер из Малмсбери, вдохновлённый греческим мифом об Икаре, сделал искусственные крылья и спрыгнул с башни местного аббатства. Пролетев небольшое расстояние, при приземлении монах сломал ноги и хотел, усовершенствовав конструкцию и добавив хвост, повторить полёт, но аббат запретил ему это. Большинство же «изобретателей» заканчивали куда хуже — разбивались насмерть. И всё же — какова история летательных аппаратов и когда появились первые удачные приспособления, позволявшие людям подняться в воздух?

Начинается история полётов в древнем Китае. Ещё в 3-4 веках до н. э. китайцы изобрели воздушный змей. Изначально это приспособление использовалось для развлечения народа на всяких праздниках.

zmey

китайский воздушный змей в форме дракона

Однако вскоре воздушным змеям нашли и другое применение. Например, рыбаки стали использовать воздушных змеев для ловли рыбы, привязывая к ним приманку, воздушные змеи применялись для обмена сигналами на больших расстояниях, с их помощью даже доставляли сообщения и разбрасывали листовки. Конечно же, китайцев посетила и мысль, что большой воздушный змей может поднять в воздух и человека. Полёт на воздушном змее был довольно рискованным, однако история сохранила свидетельства удачных полётов. Первое дошедшее до нас письменное упоминание о таком полёте относится к 559 году. В этом году жестокий император Ци Вэньсюаньди приказал запускать на больших воздушных змеях своих политических оппонентов, осуждённых на казнь. Одному из них удалось пролететь несколько километров и благополучно приземлиться за чертой города.

Удивительно, что прошли тысячи лет, прежде чем полёты на дельтапланах, т. е., фактически таких же простых летательных аппаратах без двигателя, как и китайский воздушный змей, стали популярными и получили распространение. Одним из энтузиастов таких полётов стал Отто Лилиенталь, совершивший конце 19 в. более 2000 успешных полётов на планерах собственной конструкции. Он использовал те же материалы, что и китайцы — деревянные прутья и шёлк.

liliental

liliental2

фото — полёты Лилиенталя

К сожалению, один из полётов закончился несчастным случаем — порыв ветра опрокинул планер и Лилиенталь упал, сломав позвоночник. «Жертвы неизбежны» — сказал он по этому поводу. А современная история дельтапланеризма началась лишь в 70-е годы 20 в. Датой рождения современного дельтаплана считается 1971 год.

До появления самолётов и вертолётов самым простым способом совершить полёт было использование летательных аппаратов легче воздуха — воздушных шаров и дирижаблей. Что интересно, история здесь снова ведёт нас в Китай. Вероятно, ещё в 3м в. до н. э. в Китае были изобретены воздушные фонарики. Этот фонарик — простая конструкция из рисовой бумаги с небольшой горелкой внутри.

fonariki

китайские воздушные фонарики

Китайцы использовали воздушные фонарики в церемониях и как средство сигнализации. Прошли тысячи лет, прежде чем на воздушных шарах начали летать люди.

Изобретателями воздушного шара считаются братья Монгольфье из Франции. Руководствовались братья не совсем правильными идеями — им пришла в голову мысль сделать аналог облака и поместить его в мешок, чтобы оно могло поднять этот мешок в воздух. С этой целью они наполняли свои шары дымом от сожжения смеси соломы и мокрой шерсти. Тем не менее, их подход привёл к успеху. Сначала браться проводили эксперименты с небольшими шарами у себя дома, а затем устроили большую демонстрацию воздушного шара для жителей своего города Анноне. Это произошло 4 июня 1783 года. Вскоре о воздушном шаре узнали в Париже, и осенью того же года братья Монгольфье запускали свои шары уже в Версале. Впервые на воздушном шаре решили запустить пассажиров — ими стали овца, утка и петух. Наконец, убедившись, что полёт на воздушном шаре не повредит человеку, 19 октября 1783 года первый полёт на воздушном шаре совершили люди.

shar

первый полёт на воздушном шаре

Воздушные шары имели существенный недостаток — их полёт зависел от направления ветра, поэтому в течение 19 в. не прекращались попытки создать управляемый летательный аппарат с двигателем. Пробовали как варианты с установкой двигателя на воздушный шар, так и с установкой двигателя на планер. Но несмотря на то, что идея управляемого полёта была высказана вскоре после полёта первого воздушного шара, прошло больше ста лет, прежде чем управляемый полёт стал реальностью. Лишь в 1884 году французы Шарль Ренар и Артур Кребс смогли построить дирижабль, способный свободно перемещаться в любом направлении. Их дирижабль имел удлинённую форму и был оснащён электрическим двигателем, работавшим на аккумуляторах.

dirizhabl

дирижабль Ренара и Кребса

Попытки поставить двигатель на планер и изобрести, таким образом, самолёт, долгое время не приводили к особым успехам. Среди таких попыток был, например, самолёт Можайского. Можайский, контр-адмирал российского флота, стал изобретать самолёт ещё в 50-е годы 19 в. Начав с планеров, которые поднимали в воздух запряжённые лошади, Можайский перешёл к конструированию самолёта с двигателем. К сожалению, паровые двигатели, которыми он пробовал оснастить самолёт, были слишком тяжёлыми, и удержать его в воздухе не могли, хотя и имеются свидетельства, что самолёт Можайского был способен взлетать на короткое время.

mozhaiskiy

самолёт Можайского (модель)

Можайский потратил на изобретательскую деятельность все свои деньги, продал имение и в конце концов умер от болезни в нищете. Тогдашние российские чиновники не заинтересовались идеями Можайского и не стали финансировать его работу, в результате общепризнанными изобретателями самолёта стали американцы братья Райт. Они совершили свой первый подтверждённый полёт в 1903 году, через 13 лет после смерти Можайского.

Первый документально зафиксированный полёт самолёта конструкции братьев Райт состоялся 17 декабря 1903 года. При этом самолёт запускался с помощью рельсовой катапульты, а расстояние, которое он пролетел, составило всего 30 метров.

rait

первый полёт самолёта братьев Райт

Братья Райт изобрели не только сам самолёт, но и лёгкий бензиновый двигатель для него, что и стало настоящим прорывом в самолётостроении. Тем не менее от первого полёта до активного развития авиации прошло время. В следующем году братья Райт в присутствии журналистов не смогли повторить свой успех, самолёт отправился в ангар, а изобретатели занялись конструированием новой, более совершенной модели. Военное ведомство США не спешило заключать контракт с братьями Райт, сомневаясь в способности велосипедных механиков (именно такая специальность была у изобретателей) сконструировать что-то стоящее. В Европе же сообщения о полётах братьев Райт и вообще считали враньём. Лишь в 1908 г. после впечатляющих демонстрационных полётов, проведённых изобретателями как в США, так и в Европе, мнение изменилось, а братья Райт стали не только знаменитыми, но и богатыми.

В 1909 г. российское правительство, наконец, осознало важность изобретений в области авиации. Оно отказалось покупать самолёт братьев Райт и приняло решение создать собственный самолёт самостоятельно. Первый российский аэроплан построил и в 1910 году совершил на нём полёт профессор Александр Кудашев.

Похожие записи

interesnyjfakt.ru

Летательный аппарат - это... Что такое Летательный аппарат?

        устройство для управляемого полёта в атмосфере планеты или космическом пространстве. Полёт Л. а. представляет собой движение над твердой и жидкой поверхностью планеты или в межпланетном пространстве. Л. а. используются для перевозки людей и грузов, выполнения с.-х., строительных и др. работ, для ведения научных исследований и в военных целях. Различают атмосферные и космические Л. а. Атмосферные Л. а. делятся, в свою очередь, на 2 класса: аппараты тяжелее воздуха и аппараты легче воздуха.

         Силы, действующие на Л. а. На Л. а. действует притяжение планеты и др. небесных тел, а при полёте в атмосфере — также и сопротивление среды. Действие этих сил преодолевается с помощью подъёмной силы (См. Подъёмная сила) и силы тяги. Подъёмная сила и сила тяги используются также для управления Л. а., т. е. для изменения величины и направления скорости полёта и положения Л. а. в пространстве.          При создании подъёмной силы используются следующие принципы: аэростатический, аэродинамический и газодинамический. Аэростатическая сила, или архимедова сила, образуется из-за разности плотностей газа, заполняющего оболочку аппарата, и атмосферного газа (рис. 1а, 1б,) и приложена к внешней поверхности Л. а. (см. Архимеда закон). Она направлена вертикально вверх. Аэродинамическая сила также приложена к внешней поверхности Л. а. (см. Аэродинамические сила и момент). Образуется из-за перепада давления на поверхности Л. а. при несимметричном обтекании его газообразной средой атмосферы (рис. 2а, 2б, 2в, 2г). Составляющая аэродинамической силы, перпендикулярная направлению полёта, образует подъёмную силу, а составляющая, параллельная скорости полёта и направленная назад, — Аэродинамическое сопротивление (лобовое сопротивление). Отношение подъёмной силы к силе лобового сопротивления называется аэродинамическим качеством. В газодинамическом принципе создания подъёмной силы используется давление газа, действующего на внутреннюю поверхность реактивного двигателя (рис. 3а, 3б).          Сила тяги, создаваемой воздушным винтом (См. Воздушный винт) или реактивным двигателем (См. Реактивный двигатель), численно равна приращению количества движения рабочего вещества, отбрасываемого ими. Винт приводится во вращение двигателем (поршневым или газотурбинным). Реактивные двигатели делятся на воздушно-реактивные и ракетные. При создании тяги с помощью винта и воздушно-реактивного двигателя (См. Воздушно-реактивный двигатель) в качестве рабочего вещества используется атмосферный газ (воздух). Рабочее вещество для ракетного двигателя (См. Ракетный двигатель) транспортируется на самом Л. а., поэтому ракетный двигатель можно применять как на атмосферных, так и на космических Л. а. Если направление силы, создаваемой винтом или реактивным двигателем, наклонено к направлению полёта, то эту силу можно разложить на две составляющие. Составляющую, перпендикулярную направлению полёта, можно рассматривать как подъёмную силу, а составляющую, параллельную направлению полёта, — как тягу. Создание тяги и подъёмной силы связано с затратами энергии. Источником энергии может быть химическое или ядерное горючее, запасённое на борту Л. а. На космическом Л. а. возможно также использование солнечной энергии.          Обычно полёт Л. а. состоит из 3 основных этапов: взлёт (разбег, набор высоты), установившийся полёт (полёт с приблизительно постоянной скоростью), посадка (торможение, спуск до соприкосновения с поверхностью планеты, пробег). Некоторые этапы полёта могут отсутствовать или принимать специфическую форму. Для разбега Л. а. при взлёте обычно используется тяга двигателя, установленного на нём. Взлёт Л. а. может осуществляться также и с помощью дополнительных устройств вне Л. а. (катапульт (См. Катапульта) и т.п. средств). На втором этапе, при установившемся прямолинейном полёте, равнодействующая всех сил, приложенных к Л. а., равна нулю. На третьем этапе полёта скорость постепенно уменьшается до небольшой величины, обеспечивающей безопасную посадку. Для этого необходима сила, почти уравновешивающая силу притяжения, и сила, тормозящая движение по горизонтали.          Л. а. легче воздуха (Аэростат, Дирижабль и др.). Подъёмная сила аппаратов этого класса имеет аэростатическую природу (см. Воздухоплавание). Аэростат развивает лишь подъёмную силу, горизонтальное перемещение его происходит под действием ветра. Управление аэростатом сводится к изменению высоты полёта путём изменения его массы и объёма. Дирижабль имеет воздушные винты, создающие тягу и приводимые во вращение двигателями. Кроме средств управления, применяемых на аэростате, на дирижабле используются аэродинамические органы управления.          Л. а. тяжелее воздуха (Самолёт, Планёр, Вертолёт, Винтокрыл и др.). Подъёмная сила аппаратов этого класса имеет преимущественно аэродинамическую природу. В некоторых случаях используется также газодинамический принцип создания подъёмной силы. Наиболее распространённым Л. а. тяжелее воздуха является самолёт. Его подъёмная сила создаётся в основном Крылом. Значительно меньшая доля приходится на подъёмную силу фюзеляжа и оперения. Рассматриваются проекты самолётов для полётов при гиперзвуковых скоростях, у которых подъёмная сила образуется в основном корпусом. Тяга самолёта создаётся с помощью поршневого, газотурбинного или воздушно-реактивного двигателя. Ракетный двигатель используется на самолёте редко (обычно в качестве ускорителя). На перспективном гиперзвуковом самолёте возможно применение ракетного двигателя как основного средства создания тяги. Для управления самолётом используются аэродинамические органы (рули высоты и направления, Элероны и др.), а также регулирование тяги.          Подъёмная сила крыла изменяется приблизительно пропорционально квадрату скорости полёта. При малых скоростях подъёмной силы крыльев недостаточно для отрыва самолёта от поверхности Земли. Для каждого самолёта существует минимальная скорость, при которой подъёмная сила крыльев равна весу самолёта. Поэтому при взлёте необходим разбег для достижения её, а при посадке — пробег, чтобы погасить её до нуля. Это приводит к необходимости создания аэродромов со взлётно-посадочными полосами. Уменьшение минимальной скорости и соответствующее сокращение длины разбега и пробега самолёта достигается увеличением подъёмной силы крыльев посредством их механизации (см. Механизация крыла), сдува пограничного слоя (См. Пограничный слой) с крыла, обдува крыла струями от винтов и др. способами.          Подъёмная сила может быть создана и на неподвижном Л. а. Для этого его крылья должны двигаться относительно корпуса Л. а. Известны проекты Л. а. с машущими и колеблющимися крыльями (см. Орнитоптер). Применение нашёл вертолёт — Л. а. с несущим винтом, который можно рассматривать как систему крыльев, вращающихся в плоскости, близкой к горизонтальной. Наклоном плоскости вращения несущего винта к направлению полёта создаётся не только подъёмная сила, но и тяга. У винтокрыла подъёмная сила создаётся одновременно несущим винтом и крылом, а тяга — тянущим и несущим винтами. Существуют самолёты с винтами, плоскость вращения которых может изменяться от вертикальной до горизонтальной. Такие самолёты могут совершать вертикальные взлёт и посадку. Использование газодинамического принципа создания подъёмной силы позволяет и реактивному самолёту летать с малыми скоростями и даже «висеть», совершать вертикальные или укороченные взлёт и посадку. Это достигается отклонением вниз струи реактивного двигателя посредством поворотных сопл либо использованием специальных вертикально установленных двигателей.          Космические Л. а. (Автоматическая межпланетная станция, искусственный спутник Земли (См. Искусственные Спутники Земли), Космический корабль и др.). Из-за большого своеобразия различных этапов космического полёта и для уменьшения массы космического Л. а. делается составным. Он состоит обычно из следующих автономных частей: стартовой ракеты, орбитального или межпланетного корабля, аппарата, спускаемого на поверхность планеты. Стартовая ракета разгоняет Л. а. до скорости, равной или превосходящей орбитальную. Управление ракетой осуществляется изменением значения и направления действия тяги ракетных двигателей, а при наличии на планете атмосферы — также посредством аэродинамических рулей. Орбитальным и межпланетным кораблями управляют с помощью ракетных двигателей. При дальних межпланетных перелётах ракетный двигатель целесообразно применять также для дополнительного разгона межпланетного корабля с целью уменьшения продолжительности перелёта. Эффективность использования рабочего вещества в двигателе тем выше, чем больше скорость истечения газа из него. В ракетных двигателях поток газа разгоняют путём его нагревания за счёт сжигания химического горючего и последующего расширения в сопле. Разрабатываются двигатели для космических Л. а., в которых поток газа разгоняется до более высоких скоростей, чем в ракетном двигателе (плазменный двигатель (См. Плазменные двигатели), Электростатический ракетный двигатель). На окончательном этапе полёта космического Л. а. производится его торможение ракетным двигателем. Если планета лишена атмосферы, то ракетным двигателем пользуются вплоть до соприкосновения с её поверхностью. Если же планета имеет атмосферу, то используются также аэродинамические силы. Применение подъёмной силы позволяет снизить перегрузки, неблагоприятно действующие на человека. Управление Л. а. при спуске путём изменения его подъёмной силы позволяет повысить точность посадки. Рассматриваются проекты перспективных космических аппаратов, которые смогут взлетать с поверхности Земли и садиться на её поверхность подобно самолёту.

        

         В. Я. Боровой.

        

        Рис. 1а. Схема, поясняющая аэростатический принцип создания подъёмной силы. На схеме: р — давление воздуха; ρ — плотность воздуха; g — ускорение силы тяжести; h — высота аэростата; Об. — оболочка аэростата. Стрелками показано распределение давления на поверхности летательного аппарата, окружённого воздухом.

        

        Рис. 2а. Схема, поясняющая аэродинамический принцип создания подъёмной силы крылом дозвукового самолёта. На схеме: ρ — давление воздуха; α — угол атаки крыла; V — скорость полёта; У — подъёмная сила; Р — тяга; НВ — несущий винт; ПВ — плоскость вращения несущего винта. Стрелками показано распределение давления на поверхности крыла.

        

        Рис. 2в. Схема, поясняющая аэродинамический принцип создания подъёмной силы несущим винтом вертолёта. На схеме: ρ — давление воздуха; α — угол атаки крыла; V — скорость полёта; У — подъёмная сила; Р — тяга; НВ — несущий винт; ПВ — плоскость вращения несущего винта. Стрелками показано распределение давления на поверхности крыла.

        

        Рис. 3а. Схема, поясняющая газодинамический принцип создания подъемной силы. На схеме: 1 — компрессор; 2 — форсунки для распыления топлива; 3 — камера сгорания; 4 — газовая турбина; 5 — газодинамические рули, отклоняющие струю газов и, следовательно, изменяющие направление тяги двигателя.

        

        Рис. 1б. Внешний вид дирижабля.

        

        Рис. 2б. Внешний вид самолёта Ту-124.

        

        Рис. 2г. Внешний вид вертолёта Ми-10.

        

        Рис. 3б. Внешний вид самолета с вертикальным взлетом и посадкой.

dic.academic.ru

Летательный аппарат. История изобретения

О том, чтобы подняться в воздух и парить там, словно птицы, люди мечтали со времен глубокой древности. Наблюдения за пернатыми подсказывали, что для полета человеку необходимы крылья. Древнегреческий миф об Икаре и Дедале рассказывает о том, как был сконструирован первый самодельный летательный аппарат – крылья из перьев, скрепленные воском. Вслед за мифическими героями многие смельчаки разрабатывали собственные конструкции крыльев. Но их мечты подняться в небо не сбылись, дело заканчивалось катастрофой.

самодельный летательный аппарат

Следующим этапом в попытке изобрести работающий летательный аппарат стало использование подвижных крыльев. Они приводились в движение силой ног или рук, но только хлопали, а поднять всю конструкцию в небо не были способны.

Не остался в стороне и Леонардо да Винчи. Известны разработки Леонардо летательных аппаратов с подвижными крыльями, приводимыми в движение силой человеческих мускулов. Первый летательный аппарат, который спроектировал гениальный итальянский ученый и изобретатель, считается прототипом вертолета. Леонардо изобразил схему устройства, снабженного огромным воздушным винтом из пропитанного крахмалом льняного материала диаметром в 5 метров.

первый летательный аппарат

По замыслу конструктора, четверо мужчин должны были вращать специальные рычаги по кругу. Современные ученые говорят, что для того, чтобы привести данную конструкцию в движение, силы мускулов четырех человек было недостаточно. Но если бы Леонардо да Винчи использовал в качестве пускового механизма мощную пружину, его летательный аппарат мог бы совершить кратковременный, но настоящий полет. На этом разработки конструкций для полетов да Винчи не прекратил, он проектировал аппараты, которые могли бы парить при помощи силы ветра, а в 1480-х годах нарисовал чертеж устройства «для прыжков с любой высоты без вреда для человека». Приспособление, изображенное на картинке, мало отличается от современного парашюта.

Как бы ни удивительно это звучало, но первый летательный аппарат, который поднялся в небо, был лишен крыльев. В конце восемнадцатого века братья Монгольфье, французы Жак Этьен и Жозеф Мишель, изобрели громоздкий воздушный шар. Этот летательный аппарат, наполненный теплым воздухом, мог поднимать груз или людей. Первым человеком, поднявшимся в небо на шаре-монгольфьере стал соотечественник изобретателей Жан-Франсуа Пилатр де Розье. А уже через месяц он совершил на воздушном шаре в компании с маркизом д'Арландом первый свободный полет. Произошло это в 1783 году.

первый летательный аппарат

Воздушный шар-монгольфьер двигался по воле ветра, люди задумались об управляемых полетах. В 1784 году, всего лишь через год после первого полета на воздушном шаре, известный ученый, математик, изобретатель и военный инженер Жак Менье представил проект дирижабля (в переводе с французского языка это слово означает «управляемый»). Он придумал вытянутую обтекаемую форму дирижаблей, способ крепления гондолы к шару, баллонет внутри оболочки для восполнения утечки газа. А самое главное - летательный аппарат Менье был оснащен воздушным винтом, который, вращаясь, должен был толкать конструкцию вперед.

летательный аппарат

Только воплотить гениальную идею Жака Менье в те времена не представлялось возможным, подходящий пропеллер тогда еще не был изобретен.

В любом случае именно благодаря разработкам ученых прошлых веков и их самодельным летательным аппаратам стало возможным развитие современной авиации и появление быстрых, вместительных и надежных самолетов.

fb.ru

Планёр (летательный аппарат) - это... Что такое Планёр (летательный аппарат)?

Планёр (летательный аппарат)

1843. планер «Ариэль» на рекламном плакате Ariel Transit Company Планёр во время буксировки

Планёр (фр. planeur, от лат. planum — плоскость) — безмоторный (исключение — класс мотопланёров) летательный аппарат тяжелее воздуха, поддерживаемый в полете за счет аэродинамической подъемной силы, создаваемой на крыле набегающим потоком воздуха. В ряде случаев планёром называют несущую конструкцию летательного аппарата (см. планер самолета).

Примерами планёра являются с детства каждому знакомые бумажный самолётик, бумажный голубь.

Наблюдения за полётами птиц побудили строить махолёты и целое семейство летательных аппаратов (дельтаплан, параплан и др.), использующих приёмы свободного полёта (парение в восходящих потоках, разгон и выход из пике).

Для доставки планёра к точке начала свободного полёта используется либо летательный аппарат другого типа (как правило — самолёт-буксировщик например PZL-104 Wilga), либо собственный двигатель с малым ресурсом (например пороховой), либо катапульта. Также применяется наземная лебёдка с длинным тросом, резиновый жгут, натягиваемый командой людей, и старт с наветренного склона горы. Существуют и мотопланёры с собственным двигателем внутреннего сгорания и воздушным винтом. Большинство мотопланёров используют двигатель только после взлёта (для набора высоты в полёте, т. н. круизные мотопланёры), но некоторые их модели с достаточной тягой двигателя способны взлетать и самостоятельно.

Мотопланёр

Конструкции, способные к планирующему полету, известны человечеству с древности. Доказательства существования планёров в Древнем Египте (2500—1500 гг. до н. э.) предоставила Исидор Уильям Дейчес. Эмануил Сведенборг (1688—1772) сделал эскизы планёра приблизительно в 1714 г. В 1853 сэр Джордж Кейли сконструирован первый современный планёр, поднявший человека в воздух.

На рубеже XIX и XX веков самым известным создателем планёров был Отто Лилиенталь. Изготовив и испытав множество моделей, ему удалось создать удачную конструкцию балансирного планёра с хорошими лётными характеристиками. Расцвет планёров пришёлся на 20—30-е годы XX века, когда начался настоящий бум планёрных школ. Многие пилоты второй мировой войны совершили свои первые полёты в этих школах. Доступность и относительная дешевизна способствовали широкому распространению планёрного спорта после окончания войны.

В настоящее время планёрный спорт является общепризнанным и массовым увлечением в развитых странах. Современные планёры, благодаря достижениям аэродинамики и материаловедения, способны пролететь 60 км по прямой с высоты 1 км в спокойном воздухе. Опытные планеристы, стартовав с высоты 1 км и используя восходящие потоки — термики, способны преодолевать сотни километров без затрат горючего. Существуют также планёры для высшего пилотажа и полётов за грозовым фронтом, что позволяет использовать мощные восходящие потоки и пролетать значительные расстояния.

Современный двухместный планёр

В настоящее время по правилам ФАИ рекорды в планёрном спорте регистрируются, если они установлены в течение одного светового дня. Максимальная дистанция, пройденная на планёре — 3009 км. Клаус Олман (Klaus Ohlmann) из Германии выполнил этот полет 21 января 2003.

Современные планёры отличаются большим разнообразием: начиная от сверхлегких, весом в десяток килограммов и скоростью полета чуть больше скорости лошади, и заканчивая космическими челноками, стартовой массой более 100 тонн и скоростью на орбите 28000 км/ч — любой крылатый космический корабль снижается в атмосфере и садится в режиме планёра, хотя по своим лётным характеристикам мало напоминает обычный планёр.

См. также

Ссылки

dic.academic.ru

ЛЕТАТЕЛЬНЫЙ АППАРАТ - это... Что такое ЛЕТАТЕЛЬНЫЙ АППАРАТ?

 ЛЕТАТЕЛЬНЫЙ АППАРАТ ЛЕТАТЕЛЬНЫЙ АППАРАТ, любой аппарат, способный летать в земной атмосфере. Наиболее распространенным видом таких аппаратов является самолет, или аэроплан. Это аппарат тяжелее воздуха, у которого возможность летать зависит от наличия жестко закрепленных крыльев, создающих ПОДЪЕМНУЮ СИЛУ, КОГДА самолет движется благодаря ТЯГЕ, развиваемой двигателем. Тягу может обеспечивать пропеллер (воздушный винт), приводимый в движение поршневым двигателем или турбиной, либо выхлопные газы реактивной установки или ракетного двигателя. ПЛАНЕРЫ отличаются от самолетов только тем, что они не имеют двигателя и их полет полностью зависит от воздушных потоков. Основным компонентом корпуса самолета является фюзеляж, к которому прикреплены крылья и хвостовая часть. Двигатели могут быть расположены внутри крыльев либо подвешены под ними, но иногда их монтируют на фюзеляже ближе к хвосту или, как в некоторых военных самолетах, встраивают в корпус ближе к крыльям. Под фюзеляжем находится устройство, предназначенное для посадки самолета (шасси), снабженное тяжелым колесами и мощными амортизаторами, поглощающими силу удара. При взлете шасси полностью втягивается в крылья или фюзеляж. Конструкция крыльев зависит от типа самолета; у высокоскоростных истребителей крылья острые, часто убирающиеся или регулируемые, они создают минимальное сопротивление воздуха на высоких скоростях. Полной противоположностью им являются тяжелые грузовые самолеты, им нужны более широкие крылья для получения необходимой подъемной силы при взлете. Существуют так называемые треугольные крылья - они широкие и представляют собою расширение фюзеляжа; такая конструкция с аэродинамической точки зрения подходит и для больших, и для малых высокоскоростных самолетов. Самолетом управляет пилот, который регулирует положение заслонок и ЭЛЕРОНОВ на крыльях, а также рули высоты в хвостовой части. Изменение положения этих устройств приводит к изменению давления на различных участках профиля крыла (см. ВОЗДУШНЫЙ ПРОФИЛЬ), в результате чего самолет поднимается, опускается, наклоняется или поворачивается в воздухе. Пилоту необходимо знать показания многих приборов управления, к их числу относятся альтиметры, показывающие высоту, указатель горизонта, показывающий угол наклона, наземную скорость, скорость взлета или спуска и поворота. Двигатель и конструктивные элементы контролируются отдельным рядом приборов, датчиков и сигнальных ламп. РАДАРНЫЕ системы помогают ориентироваться, а АВТОПИЛОТ удерживает самолет на заданном курсе. В салоне поддерживается необходимое давление воздуха, что позволяет пассажирским самолетам летать на высотах, превышающих 10 000 м. см. также ДИРИЖАБЛЬ, АЭРОДИНАМИКА, ВОЗДУШНЫЙ ШАР, ВЕРТОЛЕТ.

Научно-технический энциклопедический словарь.

Смотреть что такое "ЛЕТАТЕЛЬНЫЙ АППАРАТ" в других словарях:

  • ЛЕТАТЕЛЬНЫЙ АППАРАТ — устройство для полетов в атмосфере или космическом пространстве. Различают летательные аппараты легче воздуха (аэростаты), тяжелее воздуха (см. Авиация) и космические летательные аппараты …   Большой Энциклопедический словарь

  • Летательный аппарат — техническое устройство для осуществления полетов в атмосфере Земли или в космическом пространстве. Движущиеся в атмосфере подразделяются на летательные аппараты легче воздуха (например, дирижабль) и тяжелее воздуха (например, самолет, ракета).… …   Морской словарь

  • летательный аппарат — сущ., кол во синонимов: 1 • вимана (3) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • летательный аппарат — — [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en] EN aircraft Any structure, machine, or contrivance, especially a vehicle, designed to be supported by the air, either by the dynamic action of the air upon the surfaces of the… …   Справочник технического переводчика

  • Летательный аппарат — (ЛА) устройство для полётов в атмосфере или космическом пространстве[1]. Содержание 1 Выбор критерия 1.1 Принцип полёта …   Википедия

  • летательный аппарат — устройство для полёта в атмосфере Земли (другой планеты) или в космическом пространстве. Все летательные аппараты традиционно подразделяют на аппараты легче воздуха, тяжелее воздуха и космические. К аппаратам первой группы относятся аэростаты и… …   Энциклопедия техники

  • летательный аппарат — устройство для полётов в атмосфере или космическом пространстве. Различают летательные аппараты аэростатические (аэростаты, стратостаты, дирижабли), аэродинамические (планёры, самолёты, вертолёты и т. п.), космические летательные аппараты и… …   Энциклопедический словарь

  • Летательный аппарат — летательные аппараты самолеты, вертолеты, авиационные, авиационно космические ракеты, аэростаты, дирижабли, планеры, автожиры, дельтапланы и другие летательные аппараты. Летательные аппараты могут быть военными, специальными, гражданскими и… …   Официальная терминология

  • летательный аппарат — orlaivis statusas T sritis Kūno kultūra ir sportas apibrėžtis Aparatas skraidyti atmosferoje. Orlaiviai gali būti lengvesni už orą, sukeliantys statinę keliamąją jėgą (pvz., aerostatas, dirižablis) ir sunkesni už orą, kurių keliamoji galia… …   Sporto terminų žodynas

  • летательный аппарат — (ЛА) — устройство для полётов в атмосфере Земли или в космическом пространстве. По наличию экипажа ЛА делятся на пилотируемые и беспилотные, по степени повторности использования — на одно и многоразовые, по назначению — на научно… …   Энциклопедия «Авиация»

dic.academic.ru

летательный аппарат - это... Что такое летательный аппарат?

лета́тельный аппара́т (ЛА) — устройство для полётов в атмосфере Земли или в космическом пространстве. По наличию экипажа ЛА делятся на пилотируемые и беспилотные, по степени повторности использования — на одно- и многоразовые, по назначению — на научно-исследовательские (экспериментальные), народнохозяйственные (пассажирские, грузовые, сельскохозяйственные, и т. д.), военные, спортивные. Различают аэростатические, аэродинамические, космические летательные аппараты и ракеты.

Аэростатические (воздухоплавательные) ЛА — аппараты, у которых всплывная сила обеспечивается архимедовой силой, действующей на оболочку, наполненную лёгким газом или тёплым воздухом (см. Архимеда закон, Аэростатика). К ним относятся аэростаты, стратостаты, дирижабли, гибридные летательные аппараты. Первый полёт людей был совершён в 1783 на тепловом аэростате, построенном братьями Монгольфье.

Аэродинамические ЛА — аппараты, использующие для полета аэродинамическую подъёмную силу, которая образуется при обтекании воздушным потоком крыла (планёры, самолёты, махолеты, экранопланы, крылатые ракеты), несущего винта (автожиры, вертолёты, летающие платформы с несущим винтом и т. п.), несущего корпуса (аппараты с несущим корпусом). На некоторых аэродинамических ЛА вертикального взлёта и посадки крыло выполняет функции несущей поверхности только при наличии горизонтальной скорости (преобразуемые аппараты, самолёты вертикального взлёта и посадки, винтокрылы).

Космические ЛА предназначаются для полётов в космическое пространство; включают орбитальные, межпланетные и другие аппараты. На участке выведения космическому аппарату в соответствии с его назначением сообщается (например, с помощью ракеты) та или иная космическая скорость, после чего летательный аппарат продолжает полёт по инерции в поле сил тяготения. Свойства аэродинамических и космических летательных аппаратов сочетаются в воздушно-космическом самолёте.

Ракеты способны двигаться как в атмосфере Земли, так и в безвоздушном пространстве под действием реактивной силы — тяги ракетного двигателя. Применяются для запуска космических ЛА (ракеты-носители), доставки средств поражения к различным целям (боевые ракеты — баллистические и управляемые), проведения научных исследований (геофизические и метеорологические ракеты) и т. д.

Ю. В. Макаров.

Энциклопедия «Авиация». - М.: Большая Российская Энциклопедия. Свищёв Г. Г.. 1998.

avia.academic.ru