Космические путешествия получают новую систему координат. Космос система


Вселенная

Вселенная – это огромнейшее и неисследованное место. Важно понимать, что на изучение конкретной темы или даже вопроса могут уходить десятки, а то и сотни лет. Существует миллион различных направлений, включающих сотни ответвлений. Чтобы вас не ошарашил такой информационный массив, мы предлагаем список тем, которые раскрывают информацию о Вселенной.

Некоторые думают, что Вселенная закончится взрывом. Она будет сокращаться, пока не вернется в исходную точку. За этим последует новый Большой Взрыв и образуется следующая Вселенная. Это основа циклической версии.

Большая часть научного сообщества соглашается с тем, что Вселенная плоская. Это основание базируется на показаниях прибора WMAP (изучение реликтового излучения). Но есть и те, кто не согласен. Не будем забывать, что не так давно все свято верили в плоскость Земли, так что в таких вопросах всегда остаются сомнения.

Конечно, вышеописанные сведения – всего лишь кратчайшее изложение, а вот детали вы узнаете по ссылкам. Каждая статья раскрывает интересующий вопрос и излагает все на понятном языке. Поэтому вам не придется тратить всю жизнь на изучение Вселенной, ведь ученые предоставили вам готовые сведения.

Созвездия

Получив нужные сведения, вы сможете видеть в ночном полотне не просто случайные звезды, а реальных персонажей, за которыми стоят истории, мифы и легенды. Впустите в свою жизнь созвездия, с легкостью находите их в безграничном пространстве и без проблем ориентируйтесь в родной галактике.
Зимнего неба
Весеннего неба
Летнего неба
Осеннего неба

Так что же такое Вселенная?

Некоторые даже не понимают, насколько сложным и масштабным выглядит вопрос: «Что такое Вселенная?». Можно потратить десятилетия на исследования и рассекретить лишь верхушку айсберга. Возможно, мы говорим не просто об огромном мире, но бесконечном. Поэтому нужно быть энтузиастом своего дела, чтобы погрузиться во все эти загадки, на расшифровку которых может уйти вся жизнь.

Что же такое Вселенная? Если емко, то это сумма всего существующего. Это все время, пространство, материя и энергия, образовавшиеся и расширяющиеся вот уже 13.8 миллиардов лет. Никто не может точно сказать, насколько обширны просторы нашего мира и пока нет точных предсказаний финала. Но исследования выдвигают множество теорий и пазл за пазлом собирают картинку.

Определение Вселенной

Само слово «Вселенная» происходит от латинского «universum». Впервые его использовал Цицерон, а уже после него оно стало общепринятым у римских авторов. Понятие обозначало мир и космос. На тот момент люди в этих словах видели Землю, все известные живые существа, Луну, Солнце, планеты (Меркурий, Венера, Марс, Юпитер и Сатурн) и звезды.

Геоцентрическая концепция Вселенной Птолемея, созданная Бартоломеу Велью

Иногда вместо «Вселенная» используют «космос», которое с греческого переводится как «мир». Кроме того, среди терминов фигурировали «природа» и «все». В современном понятии вмешают все, что существует во Вселенной – наша система, Млечный Путь и прочие структуры. Также сюда входят все виды энергии, пространство-время и физические законы.

Происхождение Вселенной

Вселенная берет свое начало 13.8 лет назад с Большого Взрыва. Это не единственное предположение (теория колеблющейся Вселенной или устойчивого состояния), но только ему удается объяснить появление всей материи, физических законов и прочих формирований.  Теория также способна рассказать, почему происходит расширение, что такое реликтовое излучение и прочие известные явления.

Теория Большого Взрыва: сингулярность – стартовая точка, с последующим расширением

Ученые начали рассматривать Вселенную с настоящего момента и постепенно возвращались к стартовой точке. Отсюда выплыло предположение, что все началось с бесконечной плотности и исчисляемого времени, запустивших процесс расширения. После первого этапа температурные показатели упали, что помогло сформироваться субатомным частицам, а после них – простые атомы. Позже гигантские облака этих формирований соединились с гравитационными силами, порождая звезды и галактики.

Официальный возраст Вселенной – 13.8 миллиардов лет. Проводя тесты с ускорителями частиц, теоретическими принципами, а также исследуя небесные объекты, ученым удалось воссоздать этапы событий, чтобы вернуть нас с современности в мгновение начала всего.

Но наиболее отдаленный период Вселенной (от 1043 до 1011 секунд) все еще вызывает споры. Стоит учитывать, что современные физические законы к тому времени еще не применимы, поэтому никто не может понять, как повела себя Вселенная. Но все же есть сторонники некоторых теорий, которые помогли выделить главные временные промежутки вселенской эволюции: сингулярность, инфляция и охлаждение.

Графическое представление сингулярности Вселенной

Сингулярность (эпоха Планка) – наиболее ранний период Вселенной. На этом этапе материя была собрана в одной точке бесконечной плоскости, где царствовали экстремальные температурные режимы. В физическом плане доминирует исключительно сила гравитации.

Это время длилось от 0 до 1043 секунд. Свое второе название эпоха получила в честь Планка, потому что лишь эта обсерватория способна проникнуть в такой промежуток. Вселенная была лишенной устойчивости, потому что вещество было не просто невероятно накаленным, но и сверхплотным. По мере расширения и снижения накаленности, возникли физические законы. С 1043 до 1036 секунды запустился температурный переход.

Начали выделяться фундаментальные силы, отвечающие за вселенские механизмы. Первой была гравитация, затем электромагнетизм и первая ядерная сила. С 1032 и до сегодня длится инфляция. Моделирование демонстрирует, что Вселенная была наполнена однородной энергией с высокой плотностью. Расширение заставило ее терять температуру.

Это началось с 1037 секунд, когда выделение сил привело к экспоненциальному росту. В этот промежуток стартует барионегез – гипотетическое событие, характеризующееся настолько высокими температурными показателями, что случайные движения частиц осуществлялись на релятивистских скоростях. При столкновениях они создавались и уничтожались. Полагают, что именно из-за этого материя преобладает над антиматерией.

Когда инфляция подошла к концу, пространство представляло собою кварк-глюонную плазменную структуру и прочие элементарные частички. С остыванием материя сливалась и формировала новые структуры. Период охлаждения наступил с уменьшением температуры и плотности. В этом процессе элементарные частички и фундаментальные силы приобрели современный вид.

Есть мнение, что через 1011 секунд энергия стремительно снизилась. Еще спустя 106 секунд кварки и глюоны объединились в барионы, что привело к их переизбытку. Температура больше не достигала необходимой отметки, поэтому у протонов-антипротонов исчезла возможность формировать новые пары. Произошла массовая аннигиляция, оставившая лишь 1010 изначального их количества. То же самое случилось и для электронов и протонов спустя секунду.

Оставшиеся протоны, электроны и нейтроны оставались статичными, поэтому вселенская плотность обеспечивалась только фотонами и нейтрино. Прошло еще несколько минут, и начался нуклеосинтез.

Температура остановилась на отметке в миллиард кельвинов, а плотность уменьшилась. Поэтому протоны и нейтроны начали сливаться, формируя изотоп водорода (дейтерий) и атомы гелия. Но большая часть протонов все же оставалась «одиночной».

Проходит 379000 лет и электроны, объединенные с ядрами водорода, создали атомы, а отделенное излучение продолжило расширяться. Сейчас мы знаем его как реликтовое (древнейший вселенский свет). По мере расширения, его плотность и энергия терялись. Современная температура –  2.7260 ± 0,0013 К (-270,424 °C) и плотность энергии 0,25 эВ/см3. Вы можете посмотреть в любую сторону и повсюду натолкнетесь на остатки этого излучения.

Эволюция Вселенной

В течение следующих миллиардов лет гравитация заставила более плотные области притягиваться. В этом процессе формировались газовые облака, звезды, галактические структуры и прочие небесные объекты. Этот период именуют Структурной Эпохой, так как именно в этот временной отрезок зарождалась современная Вселенная. Видимое вещество распределялось на различные формирования (звезды в галактики, а те в скопления и сверхскопления).

Если говорить о деталях процесса, то они зависят количества и разновидности материи. Можно выделить 4 типа темной: холодная, теплая, горячая и барионная. Из них стандартной считается Лямбда-CDM (холодная темная материя). В ней частички перемещаются со скоростью, уступающей скорости света.

Она составляет 23% вселенской материи, а барионная достигает лишь 4.6%. Лямбда дает отсылку к космологической константе, созданной Альбертом Эйнштейном. Она доказывала, что равновесие массы-энергии остается в статике.

Этапы эволюции Вселенной. Нажмите на изображение, чтобы его увеличить

Также связана с темной энергией, послужившей причиной ускорения Вселенной и оставляющей ее структуру однородной. Темную энергию нельзя увидеть напрямую, но ее наличие доказывают многочисленные теории. Считается, что 73% пространства насыщено ею.

Гравитация преобладала над всеми процессами еще на ранних этапах, когда барионное вещество располагалось ближе. Но темная энергия росла и стала доминирующей силой. Это привело к ускорению всех процессов и старту Эпохи Ускорения.

Считают, что это время началось 5 миллиардов лет назад. Этот период описывает в своих уравнениях Эйнштейн, хотя все же настоящая природа темной материи еще не раскрыта. Кроме того, все еще не придумали схем, способных объяснить, что произошло во Вселенной до 1015 секунд после возникновения всего.

Однако ученые не теряют надежды и экспериментируют с Большим адронным коллайдером, пытаясь воссоздать необходимые условия для Большого Взрыва. Прорыв в этой области поможет понять, как гравитация взаимодействует со слабой и сильной ядерными силами, а также электромагнетизмом.

Структура Вселенной

Хотя старейший свет достигает 13.8 миллиардов световых лет (реликтовое излучение) это не реальные размеры Вселенной. Не будем забывать, что вот уже миллиарды лет пространство расширяется со скоростью выше скорости света. Именно из-за этого нам не удается увидеть край (если он есть).

Полагают, что Вселенная простирается на 91 миллиардов лет (29 миллиардов парсек) в диаметре. А это значит, что в любую сторону от нашей системы нам доступно 46 миллиардов световых лет наблюдения. Однако, мы все еще не знаем истинного размера, так что есть вариант, что Вселенная не имеет границы.

Диаграмма Вселенной Лямбда-CBR (от Большого Взрыва к нашей эре).

Вещество распределяется в соотношении со структурами. Если брать галактические пределы, то мы видим планеты, звезды и туманности, чередующиеся с пустыми участками. Даже если увеличивать картинку, то сама суть остается той же. Галактики отделены газовыми и пылевыми участками. На высшем уровне мы видим сверхскопления, формирующиеся в нити, разделенные гигантскими космическими пустотами.

Пространство-время способно существовать в одной из трех конфигураций: положительно-изогнутая, отрицательно-изогнутая и плоская. Подобные виды основываются на 4 измерениях (координаты x, y, z и время) и зависят от космического расширения (повлияет бесконечность или конечность пространства).

Положительно-изогнутая представляет собою четырехмерную сферу. У нее есть конец, но не виден резкий край. Отрицательно-изогнутую еще называют открытой, потому что напоминает седло, у которого нет границ.

Возможные формы наблюдаемой Вселенной.

В первом случае, расширение должно было остановиться из-за огромного количества энергии. Во втором ее слишком мало, чтобы остановить его. А в последнем – критическое число энергии заставило бы расширение остановиться, но через бесконечное время.

Что ждет Вселенную?

Если мы знаем о наличии стартовой точки, то нас должен волновать и финиш. Что же нас ждет? Вечное расширение? Или же возвращение в компактный первородный шарик? Эти вопросы возродились, когда велись дискуссии об истинной модели Вселенной. В 1990-х годах научное сообщество определилось с Большим Взрывом, создав два возможных варианта конца.

Познакомьтесь с Большим Сжатием. Вселенная продолжит разрастаться до максимального объема, а затем запустит процесс саморазрушения. Это возможно, если массовая плотность превышает критическую. Если же это значение такое же или ниже, тогда в игру вступает Большое Замораживание. Пространство также продолжит расширяться, пока звезды не смогут поддерживать процесс формирования (израсходуется весь газ). Все уже существующие звезды сгорели бы и трансформировались в белых карликов, а нейтронные – в черные дыры.

Возможные варианты конца Вселенной

Конечно, черные дыры стали бы притягиваться, порождая настоящих гигантских монстров. Средняя температура пространства достигла бы абсолютного нуля, и черные дыры испарились. Энтропия вырастет до такой степени, что запустит сценарий тепловой смерти, когда уже просто невозможно извлечь никакой организованной формы энергии.

Есть также теория фантомных энергий. Она полагает, что галактические скопления, планеты, звезды, ядра и даже материя разорвутся из-за расширения. Такой исход называют Большим разрывом.

История изучения Вселенной

Если говорить в общем, то природу вещей изучают еще с начала времен. Наиболее ранние известия о Вселенной представлены в мифах и передавались устно. По большей части все начинается с момента творения, за которое ответственен Бог или боги.

Астрономия появилась в Древнем Вавилоне. Созвездия и календари фигурируют у них еще 2000 лет до н.э. Более того, им даже удалось создать предсказания на последующую тысячу лет. Греческие и индийские ученые подходили к вопросам Вселенной с философской стороны, сосредотачиваясь не на божественном вмешательстве, а на причине и следствии. Можно вспомнить Фалеса и Анаксимандра, утверждавших, что все появилось из первозданной материи.

Эмпедокл (5-й век до н.э.) стал первым в западном мире, кто предположил, что Вселенная представлена землей, воздухом, водой и огнем. Эта система стала очень популярной среди философов, так как сильно походила на китайскую: металл, дерево, вода, огонь и земля.

Ранняя атомная теория утверждала, что разные материалы состоят из атомов различной формы

Только с Демокритом приходит теория о неразделимых частицах (атомов), из которых и состоит пространство. Ее продолжил философ из Индии по имени Канада, считавший, что свет и тепло являются одним веществом, просто представленным в разных формах. Буддийский философ Дигнана еще более продвинулся, заявив, что вся материя – энергия.

Идея о конечности времени вошла в христианство, иудаизм и ислам. Они верили, что у Вселенной есть начало и конец. Космология продолжала развиваться, и греки выдвигают геоцентрическую модель, которая гласит, что в центре всего стоит Земля, вокруг которой вращаются небесные тела. Детальнее всего это описано в «Альмагесте» Птолемеем. Это станет каноном и продлится до Средневековья.

Сравнение геоцентрической и гелиоцентрической моделей Вселенной

Еще до периода научной революции (16-18 века) появлялись ученые, считавшие, что в основе всего должна стоять гелиоцентрическая модель, где в центре нашей системы расположено Солнце. Среди них фигурируют Аристарх Самосский (310-230 гг. до н.э.) и Селевк (190-150 гг. до н.э.).

Хотя в индийские, персидские и арабские философы развивали идеи Птолемея, находились и революционеры. Например, Ас-Сиджизи или Ариабхата. В 16-м веке появляется Николай Коперник. Его заслуга в том, что он выдвинул концепцию гелиоцентрической модели и обосновал доказательства ее верности. Они основывались на 7 принципах:

  • Небесные тела не совершают вращение вокруг одной точки.
  • Луна вращается вокруг Земли, а все сферы совершают оборот вокруг Солнца, расположенного возле вселенского центра.
  • Дистанция Земля-Солнце – это лишь незначительная часть расстояния от Солнца к другим звездам, поэтому мы не видим параллакс.
  • Звезды пребывают в неподвижном состоянии – кажущееся движение вызвано земным осевым вращением.
  • Земля двигается по орбитальному пути, поэтому кажется, что Солнце мигрирует.
  • У Земли наблюдается больше одного движения.
  • Орбитальный земной проход создает впечатление, что другие планеты движутся в обратном направлении.

Титульный лист «Диалога» (1632)

Более расширенная версия его идей появилась в 1532 году, когда дописал «О вращении небесных сфер». В рукописи фигурировали те же аргументы, но уже подкрепленные научными доводами и примерами. Но автор переживал, что его начнут преследовать со стороны церкви и работа увидела свет лишь в 1542 году после его смерти.

За его идеи взялись ученые 16-17-х веков. Особой заслуги достоин Галилео Галилей. При помощи своего нового изобретение (телескоп) он впервые взглянул на Луну, Солнце и Юпитер, которые не вписывались в геоцентрическую модель, зато соответствовали гелиоцентрической.

В начале 17-го века его записи опубликовали. Интересными были наблюдения кратерной поверхности Луны, а также детализация крупнейших спутников Юпитера и выявление солнечных пятен. Не обошел он стороною и Млечный Путь, который до этого считался туманностью. Галилей увидел, что перед ним множество плотно расположенных звезд.

В 1632 году он выступил за гелиоцентрическую модель в трактате «Диалог о двух системах мира». Его аргументы разбили верования Птолемея и Аристотеля. Дальнейшему укреплению способствовала теория Иоганна Кеплера об эллиптических орбитах планет. Дальше появляется Исаак Ньютон, создавший теорию всемирного тяготения. В трактате 1687 года он описал три закона движения:

  • При наблюдении в инерциальной системе, объект пребывает в покое или двигается с постоянной скоростью, пока на него не повлияет внешняя сила.
  • Векторная сумма внешних сил (F) равняется массе (m) объекта, умноженной на вектор ускорения (a): F = ma.
  • Когда первое тело прикладывает силу ко второму, то второе одновременно прикладывает силу, равную по величине и противоположную по направлению к первому.

Демонстрация дистанции между планетами в Солнечной системе

Все вместе эти принципы описывали связь между объектом, воздействующими силами и движением. Это стало основой для классической механики. С их помощью Ньютон определил массы планет, выравнивание Земли на полюсах и выпуклость на экваторе, а также то, что сила тяжести между Солнцем и Луной создает приливы на Земле.

Следующий прорыв произошел в 1755 году. Иммануил Кант выдвигает идею, что Млечный Путь – огромная звездная коллекция, скрепленная общей гравитацией. Звезды вращаются, формируя сплющенный диск, а Солнечная система расположена внутри него.

В 1785 году Уильям Гершель хотел вычислить форму галактики, но он не догадался, что большая ее часть скрыта за пылью и газом. Пришлось ждать 20-го века и появления Эйнштейна с его Специальной и Общей теориями относительности. Началось с того, что он просто хотел решить законы ньютоновской механики законами электромагнетизма. В 1905 году появилась Специальная теория относительности.

Она утверждала, что скорость света одинакова для всех инерциальных систем координат. Но это вступало в противоречие с предыдущим мнением (свет, проходящий сквозь движущуюся среду, будет следовать вдоль среды, то есть, скорость света равняется сумме скорости прохода сквозь среду и скорость самой среды).

Получается, что эта теория сделала так, что среда вообще оказалась лишней. В 1907-1911х гг. Эйнштейн думал, как применить теорию к гравитационным полям. В итоге, он создал Общую теорию относительности (время относится к наблюдателю и зависит от его расположения в гравитационном поле).

Здесь же появляется принцип эквивалентности – гравитационная масса равняется инерционной массе. Он также предсказал замедление гравитационного времени, существование черных дыр и расширение Вселенной.

В 1915 году появляется радиус Шварцшильда – точка, в которой масса сферы будет так сильно сжата, что скорость ухода с поверхности приравнивается к скорости света (является результатом решения уравнение поля Эйнштейна). В 1931 году Субраманьян Чандрасекар использовал наработки Эйнштейна, чтобы понять, что если масса не вращающегося тела вырожденного электрона выше определенной отметки, то оно само рухнет.

В 1929 году Эдвин Хаббл подтвердил, что Вселенная расширяется. Для этого он замерил красное смещение, в котором галактики отходили от Млечного Пути. Кроме того, сумел продемонстрировать, что чем дальше галактика, тем быстрее скорость отдаления.

В 1931 году Жорж Леметр независимо подтвердил расширение и предположил, что Вселенная началась с маленького объекта (зарождение теории Большого Взрыва). То есть, в определенный момент вся масса была сконцентрирована в одной крошечной точке. Эта идея вызвала бурные споры в 1920-1930-х годах, так как все еще были сторонники статичной Вселенной.

Но споры разрешились в 1965 году, когда обнаружили реликтовое излучение. В это же время появляется предположение, что темная материя является недостающей массой Вселенной. Расширили понимание Вселенной наработки Стивена Хокинга и остальных физиков, подтвердивших вариант Большого Взрыва.

В 1990-х годах все силы тратились на попытку разобраться в темной энергии. Ее появление помогло объяснить, почему пространство продолжает ускоряться. Естественно, эпоха новых телескопов позволила впервые заглянуть в глубины космоса, а значит и в прошлое (определение возраста и плотности материи).

Хаббл Deep Field

Результаты 2016 года показывают, что скорость расширения Вселенной выше, чем полагали ранее, а значит, и постоянная Хаббла увеличилась на 5-9%. Появление телескопа нового поколения Джеймс Уэбб позволит совершить дальнейшие прорывы в изучении Вселенной.

Кажется, что человечество серьезно продвинулось в исследовании мира. Но проблема в том, что мы лишь приоткрыли дверь и с удивлением смотрим на все эти чудеса, многим из которых все еще нет объяснения. Поэтому нас ожидает еще множество открытий и сюрпризов.

Вопросы про Вселенную

Общее вопросы про космос

v-kosmose.com

Космические путешествия получают новую систему координат

В будущем, когда космические аппараты отправят на другие планеты или лучше изучат вращение Земли, будет использоваться новая опорная система отсчета. 30 августа на собрании Международного астрономического союза приняли новую международную систему координат ICRF3, позволяющую более точно определять направления в космосе. Она основана на точном измерении больше 4000 внегалактических радиоисточников.

Система координат для Вселенной

Эталонная система необходима для выполнения множества действий, вроде измерения горных вершин (долгота и широта Земли над уровнем моря), поэтому следует согласовать надежную систему координат для указания направлений в пространстве. Использование фиксированных звезд уже не кажется хорошей идеей, ведь со временен они слегка сдвигаются относительно друг друга. То есть, для поддержания нужного уровня точности придется расписывать новую систему отсчета каждые несколько лет.

Но ситуация меняется с внегалактическими радиоисточниками. Мы знаем сотни тысяч объектов в космосе, излучающих невероятно интенсивную длинноволновую радиацию. Это сверхмассивные черные дыры в центре далеких галактик (квазары), которые порой отдалены на миллиарды световых лет от нас. Огромные дистанции делают эти источники излучения идеальными для создания всемирной системы отсчета. Относительно небольшие сдвиги между квазарами присутствуют, но большой роли не играют.

Сравнение различных телескопов

Достигнуть максимальной точности сложно. Недостаточно просто сделать снимок радиотелескопом, и прочитать направление радиоисточника. Необходимо сравнить сведения из разных радиотелескопов, так как каждый источник передает сигнал с определенным уровнем шума. Измеряя шум на двух разных радиотелескопах одновременно, можно точно вычислить разницу во времени между приходом сигнала на первом и втором приборах, рассчитав направление. Расчеты также потребуют работы мощных компьютеров, вроде венского VSC-3.

С помощью этого метода локации радиоисточников в звездном небе можно добиться точности до 30 микро-угловых секунд. Это как если наблюдать за теннисным мячиком на Луне с Земли. На собрании приняли решение использовать эту высокоточную карту радиоисточников в качестве международной системы отсчета для указания локации астрономических объектов или космических аппаратов. К тому же, эталонная система нужна для мониторинга собственной планеты, вроде прецессии оси вращения или движения полюсов.

БОЛЬШЕ удивительных статей

v-kosmose.com

Космос и Солнечная система. Общие сведения

С запуском в СССР 4 октября 1957 года первого искусственного спутника Земли человечество вступило в космическую эпоху. «Космос» по-гречески – украшение, порядок. Философы Древней Греции, начиная с Пифагора (6 век до н.э.), понимали под словом «космос» Вселенную, рассматриваемую как упорядоченную гармоничную систему, в которой все движения строго подчиняются извечным законам природы.

В древнегреческой философии космос противопоставлялся хаосу – беспорядку, слепому случаю. Для древних греков понятия порядка и красоты были тесно связаны. Античная космология была, прежде всего, красивой: небесные тела считались вделанными, как драгоценные камни, в хрустальные сферы, издававшие при своём вращении прекрасные музыкальные звуки. Законы природы, по их мнению, должны были удовлетворять, прежде всего, эстетическим требованиям. Такая точка зрения долго держалась в философии и науке. Недаром даже Коперник (1473-1543), создатель гелиоцентрической системы мира, считал, что орбиты планет должны быть круговыми лишь потому, что круг красивее эллипса.

В дальнейшем космосом стали называть всю Вселенную, включая не только мир небесных светил, но и Землю. В настоящее время под космосом понимают Вселенную, рассматриваемую как нечто единое, подчиняющееся общим законам. Отсюда происходит название космологии – науки о законах строения и развития Вселенной как целого.

Слово «космос» имеет ещё одно значение, связанное с осуществлением давнишней мечты человечества о космических полётах. В современном понимании космос (точнее космическое пространство) есть всё, что находится за пределами Земли и её атмосферы. Ближайшая и наиболее доступная исследованию область космического пространства – околоземное пространство.

Основными структурными единицами во Вселенной являются грандиозные звёздные системы – галактики. Одной из таких систем является наша Галактика – звёздная система, к которой принадлежит Солнце. Она содержит 100-200млрд. звёзд.

Расстояния до звёзд и других далёких объектов Вселенной настолько велики, что для их измерения применяют специальную единицу длины, своеобразный «космический метр», называемый световым годом.

Световой год – это расстояние, которое свет проходит за год со скоростью 300 000км/с. Он составляет около 10 тысяч млрд. км, т.е. 1012км. Свет от Солнца доходит до Земли за 8,5мин. Свет от ближайшей к нам звезды Альфа Центавра – за 4,3 световых года. Подавляющее большинство звёзд находятся от Земли и друг от друга на значительно больших расстояниях.

Солнце – рядовая звезда Вселенной. Скорость движения Солнца вокруг центра нашей Галактики составляет около 300км/сек. Его уникальность для земного наблюдателя состоит в том, что это ближайшая к нам звезда, единственная пока звезда, поверхность которой возможно подвергнуть детальному изучению. Солнце представляет собой плазменный шар радиусом, равным 6,96×1010см, что в 109 раз больше экваториального радиуса Земли, массой, равной 1,99×1033г., что в 333 000 раз больше массы Земли. В Солнце сосредоточено 99,866% массы солнечной системы. Средняя плотность солнечного вещества равна 1,41г/см3, что составляет 0,256 средней плотности Земли. Ускорение свободного падения на уровне видимой поверхности Солнца g=2,74×104см/с2, т.е. в 28 раз больше, чем на поверхности Земли. Светимость Солнца » 3,86×1033эрг/сек. Основным источником энергии Солнца являются термоядерные реакции. В центральной области Солнца температура достигает 14 млн. градусов.

Солнечная система состоит из планет с их спутниками, астероидов (малых планет), комет, мелких метеорных тел, космической пыли, межпланетного газа. Происхождение, эволюция, законы движения всех этих тел неразрывно связаны с центральным телом системы – Солнцем. Солнечная система занимает обширную область пространства, простирающуюся на расстояние, превышающее в 2×105 раз расстояние от Солнца до Земли.

Для тел Солнечной системы характерны два признака. Во-первых, полная механическая энергия таких тел, складывающаяся из положительной кинетической и отрицательной потенциальной энергий, должна быть отрицательной. При этом условии тело за счёт своей кинетической энергии не может преодолеть сил солнечного притяжения и безвозвратно покинуть Солнечную систему. Во-вторых, тело, принадлежащее Солнечной системе, должно постоянно находиться в области преобладающего притяжения Солнца. В противном случае воздействие со стороны других звёзд может увеличить его полную механическую энергию до положительного значения, и тело покинет Солнечную систему.

 

1.2. Характеристики планет Солнечной системы

Прежде всего, определим понятие «планета». В последние годы под словом планета понимают тело, движущееся вокруг Солнца. К ним относятся и многие космические аппараты, сделанные руками человека и запущенные вокруг Солнца.

Крупные космические камни, движущиеся по замкнутым траекториям вокруг Солнца, называют малыми планетами или астероидами. Большая часть их находится между орбитами Марса и Юпитера. Диаметры крупных астероидов достигают нескольких сотен километров (Церера – 768км, Паллада – 489км, Юнона – 193км, Веста – 385км), мелких – нескольких километров.

Кометы – это тела Солнечной системы, движущиеся вокруг Солнца по сильно вытянутым эллиптическим орбитам. Они состоят из небольшого ядра (несколько километров в диаметре) и очень длинного хвоста, простирающегося на тысячи и миллионы километров, За длинный хвост кометы и получили своё название (в переводе с греческого языка комета означает «длинноволосый»).

Таблица 1

Характеристика Меркурий Венера Земля Марс Юпитер Сатурн Уран Нептун Плутон
Большая полуось орбиты в астрономических единицах длины   0,387   0,723   1,000   1,524   5,203   9,539   19,18   30,06   39,75
Сидерический период обращения в тропических годах     0,241     0,615     1,000     1,881     11,862     29,458     84,015     164,79     250,6
Эксцентриситет орбиты   0,2066   0,0067   0,0167   0,0934   0,0484   0,0557   0,0471   0,0087   0,253
Наклонение плоскости орбиты к эклиптике 7° 00,2¢ 3°23,6¢ - 1°51,0¢ 1°18,5¢ 2°29,5¢ 0°46,3¢ 1°46,8¢ 17°08,7¢
Экваториальный радиус, линейный: -в километрах -в радиусах Земли   0,38   0,97   1,00   0,53   11,20   9,41   3,75   3,50   0,34
Масса (без спутников), в массах Земли     0,056     0,815     1,000     0,108     317,82     95,11     14,52     17,23     0,11
Плотность, г/см3 5,59 5,22 5,52 3,97 1,30 0,71 1,47 2,27 10,4
Ускорение силы тяжести на экваторе, см/с2                                    
Параболическая скорость, км/сек   4,3   10,3   11,2   5,0   57,5        
Сидерический экваториальный период вращения, d-сутки, h-часы, m-минуты     59d     243d     23h56m 04,1s     24h47m 22,6s     9h50,5m     10h24m     10h59m     15h50m     6,4d
Число спутников - - ?
Интенсивность излучения Солнца (на Земле=1)     6,7     1,9     1,0     0,43     0,037     0,011     0,0027     0,0011     0,00064
Наличие атмосферы Следы Очень плот-ная Плот- ная Очень редкая Очень плотная Очень плот- Ная Очень плот- Ная Очень плотная ?

 

В классическом понимании планета – это космическое шарообразное тело с массой 1017-1026 тонн. Тела меньшей массы остаются твёрдыми и сохраняют свою форму как угодно долго. Тела с массой больше 1017 кг обладают свойством пластичности и с течением времени принимают форму с наименьшей площадью поверхности, то есть шаровидную. Если масса планеты будет больше 1026 тонн, то начнётся термоядерная реакция и планета превратится в маленькую звезду.

Все планеты Солнечной системы (Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон) по своим размерам делятся на две группы. Четыре ближайшие к Солнцу сравнительно маленькие планеты образуют так называемую группу Земли; следующие четыре гигантских планет составляют группу Юпитера; последняя планета Плутон по некоторым своим свойствам не принадлежит ни к одной из указанных групп. Существует много гипотез, пытающихся объяснить необычные свойства Плутона (оторвавшийся спутник Нептуна, пришелец из межзвёздного пространства и т. п.), но пока ещё эта планета остаётся для нас загадкой. Положение Плутона рассчитал американский астроном П. Ловелл (1855-1916) в 1914г., а открыт Плутон был только в 1930г. В табл.1 приведены характеристики планет Солнечной системы.

Сравнительные размеры Солнца и планет приведены на рис.1.1.

Рис.1.1. Сравнительные размеры Солнца и планет

 

Строение Солнечной системы обладает рядом закономерностей, указывающих на совместное образование всех планет в едином процессе. Эти закономерности следующие:

· движение всех планет в одном направлении по почти круговым орбитам, лежащим почти в одной плоскости;

· вращение Солнца в том же направлении вокруг оси, почти перпендикулярной центральной плоскости планетной системы;

· вращение в том же направлении большинства планет, за исключением Венеры, которая медленно вращается в обратном направлении, и Урана, который вращается как бы лёжа на боку;

· обращение в том же направлении большинства спутников планет;

· закономерное возрастание расстояний планет от Солнца;

· деление планет на две группы, отличающиеся по массе, химическому составу и количеству спутников.

В 1755г. немецкий философ И. Кант (1724-1804) в своём труде «Всеобщая естественная история и теория неба» пытался объяснить единообразный характер движения планет формированием их из рассеянного вещества, простиравшегося до границ современной планетной системы и вращавшегося вокруг Солнца. Свойства, приписывавшиеся Кантом частицам этой среды, показывают, что он имел в виду пылевое облако.

В 1796г. французский астроном, математик и физик П. Лаплас (1749-1827) выдвинул космогоническую гипотезу об образовании Солнца и всей Солнечной системы из сжимающейся газовой туманности. Согласно Лапласу, часть газового вещества отделилась от центрального сгустка под действием центробежной силы (в результате

Рис.1.2. Планеты Солнечной системы

ускорения вращения в ходе сжатия) и послужила материалом для образования планет. И Кант, и Лаплас предполагали образование планет из рассеянного вещества и потому часто говорят о единой гипотезе Канта-Лапласа. Гипотеза Лапласа долгое время владела умами учёных, но трудности, с которыми она встретилась, в частности с объяснением медленности современного вращения Солнца, заставила астрономов обратиться к другим гипотезам.

В 20-30гг. 20в. широкой известностью пользовалась космогоническая гипотеза английского астронома Д. Джинса (1877-1946), считавшего, что планеты образовались из вещества, вырванного из Солнца притяжением пролетевшей поблизости звезды. Однако в конце 30-х гг. выяснилось, что гипотеза Джинса не способна объяснить огромные размеры планетной системы. Чтобы вырвать вещество из Солнца, звезда должна была пролететь очень близко от него, а в таком случае это вещество и возникшие из него планеты должны были бы кружиться в непосредственном соседстве с Солнцем. Кроме того, вырванное вещество было бы столь горячим, что рассеялось бы в пространстве, а не собралось в планеты. После крушения гипотезы Джинса планетная космогония вернулась к классическим идеям Канта и Лапласа об образовании планет из рассеянного вещества.

В 1943г. российский учёный О.Ю. Шмидт (1891-1956) выдвинул идею об аккумуляции планет из холодных твёрдых тел. Первоначально Шмидт предполагал, что эти тела были захвачены Солнцем из межзвёздной среды. Но потом было выяснено, что различия в массе и химическом составе между группой близких к Солнцу планет и более далёких планет-гигантов указывают на образование их в окрестностях Солнца из двух частей единого газово-пылевого облака: более близкой к Солнцу части, прогретой его лучами, и более далёкой холодной части. В отличие от прежних представлений об образовании планет из раскалённых газовых сгустков, Шмидт утверждал, что Земля вначале была сравнительно холодной.

В 50-х гг. произошёл поворот от «горячих» гипотез планетной космогонии к «холодным». В настоящее время является общепризнанным, что планетная система образовалась из огромного газово-пылевого облака, некогда окружавшего Солнце. Земля и родственные ей планеты аккумулировались из твёрдых тел и частиц, а в аккумуляции планет-гигантов (по крайней мере, Юпитера и Сатурна, содержащих много водорода) участвовал, наряду с твёрдыми телами, также и газ. Аккумуляция Земли длилась 107-108 лет, а аккумуляция далёких от Солнца Урана и Нептуна, вероятно, длилась ещё больше.

Самой быстрой планетой Солнечной системы является Меркурий. Он обращается вокруг Солнца со средней скоростью 172248 км/ч, что в два раза больше скорости вращения Земли. Такая скорость и тот факт, что Меркурий расположен ближе к Солнцу, чем Земля, означает, что один год на Меркурии (время его полного оборота вокруг Солнца) составляет всего 87,99 дней, или примерно 3 месяца.

Земля обращается вокруг Солнца по очень слабо вытянутому эллипсу со скоростью 29,5 км/сек. Большая полуось земной орбиты, принятая за астрономическую единицу длины, равна 149 597 870 ±1,6км. Таково среднее расстояние от Земли до Солнца (в перигелии оно на 5 000 000км меньше, чем в афелии). Сила притяжения Солнца, удерживающая Землю на орбите, составляет ~3,6×1021кг. Она могла бы разорвать трос диаметром в 3 000км.

Астрономия (от латинского слова «Astrum»), рассматривает Землю глобально и целостно как одну из планет во Вселенной.

Похожие статьи:

poznayka.org

Космическое пространство

Снимок сделан телескопом Хаббл, космическое пространствоКак считается, космическое пространство это относительно пустые участки космоса (Вселенной), которые находятся за пределами атмосфер различных небесных тел. Есть мнение, что космос это абсолютно пустое пространство, но это не так — он имеет небольшую плотность в основном это частицы водорода, и имеет электромагнитное излучение.

Понятие «Космос» имеет несколько значений. Под космосом в основном понимают все пространство, которое находится вне Земли, а также включает в себя все небесные тела.

Границы космоса.

Как таковой границы не существует потому как, постепенно удаляясь от границ любой из планет имеющей атмосферу, будет идти постепенное уменьшение давления (разряжение). И по этому, нет единого мнения когда, и от какой границы считать начало космоса.

По расчетам Астрономов США и Канады граница начинается на высоте 118 км от земли. Они измерили начало влияние космических частиц и границу атмосферных ветров. А вот NASA считает границей космоса высоту 122 км. А вот Международная Авиационная Федерация установила границу в районе 100 км.

Наша планета находится в Солнечной системе и пространство это называют межпланетным, это пространство постепенно в точках солнцестояния (гелиопаузы) переходит вмежзвездное. Также вакуум Космоса имеет не абсолютную величину — в нем есть некоторое количество атомов и молекул, обнаружены они с помощью, так называемой микроволновой спектроскопии, после Большого Взрыва осталось реликтовое излучение. В пространстве космоса имеется газ, пыль, плазма, небольшие метеориты и различный мусор (вокруг нашей планеты) оставленный человеком.

Отсутствие воздуха является хорошим местом астрономических наблюдений за дальним космосом. Там производятся наблюдения на всех видах волн электромагнитного спектра. И пример отличных снимков, сделанных телескопом Хаббл.

Солнечная система.

Это планетная система, состоящая из центральной звезды «Солнца» и остальных космических объектов, которые вращаются вокруг него. Основная она же наибольшая масса объектов которая связана с гравитацией Солнца представляет из себя 8 относительно уединенных планет. Эти планеты имеют почти круговые орбиты и располагаются в плоскостиэклиптики.

Меньшие внутренние планеты их четыре принято называть «планетами земной группы» они в основном состоят из металлов и силикатов. Планеты земной группы- это: Земля, Венера, Марс, Меркурий. Остальные планеты их тоже четыре называются газовые гиганты: Юпитер, Сатурн, Уран, Нептун. Газовые гиганты состоят в основном из водорода и гелия и имеют больший вес и размер чем планеты земной группы.

kocmos.ru

За пределами Солнечной системы

Солнечная система > За пределами Солнечной системы

После того, как мы пересекли орбиту Плутона, мы оказываемся за пределами нашей Солнечной системы, где наше Солнце уже утратило свою власть над нами. Так мы вступили в межзвездное пространство. С этого самого момента, мы больше не столкнемся с каким-то другим объектом, пока не достигнем ближайшей звездной системы.

10 фактов, которые необходимо знать о внешнем космическом пространстве

  1. Наша Вселенная расширяется. Ученые считают, что около 14 миллиардов лет назад Вселенная была сжата в одной точке пространства.
  2. Существует, по крайней мере, 100 миллиардов галактик во Вселенной. Галактика полна звезд: наше Солнце является лишь одним из 100 миллиардов звезд в нашей собственной галактике Млечный Путь, и каждая из этих звезд может иметь свою собственную планетную систему.
  3. Около 68 процентов Вселенной состоит из темной энергии. Темная материя составляет около 27 процентов. Все остальное составляет менее 5 процентов Вселенной.
  4. Теперь мы знаем, что наша Вселенная имеет структуру пены. Галактики, которые составляют Вселенную, сосредоточены в огромных листах и нитей, окружающие космические пустоты.
  5. Галактика Млечный Путь находится в Местной группе, в которой располагаются около 30 галактик. Ближайшей к нам галактикой является Андромеда.
  6. Существую более 1700 внесолнечных планет (или экзопланет), существование которых были подтверждены. Есть еще тысячи потенциальных экзопланет, которые требуют подтверждения.
  7. Другие планетные системы могут иметь потенциальную жизнь, но к настоящему моменту нет никаких доказательств.
  8. Две трети галактик во Вселенной имеет форму спирали, в том числе Млечный Путь. Существуют еще эллиптические галактики, некоторые имеют необычные формы, например зубочистки или кольца.
  9. Космический телескоп Хаббл наблюдал крошечный участок неба (одна десятая диаметра Луны) в течение 11,6 дней и обнаружил около 10000 галактик различных размеров, форм и цветов.
  10. Черные дыры не являются пустым местом пространства во Вселенной. Черная дыра представляет собой большое количество вещества, упакованного в очень небольшую площадь, что приводит к наличию настолько сильного гравитационного поля, что ничто, даже свет, не может избежать его.

Великое Запределье Солнечной системы

Наша звезда и ее планеты – лишь крошечная часть галактики Млечный Путь. Млечный Путь представляет собой огромный город из звезд, настолько большой, что потребовалось бы 100000 лет, чтобы пересечь его со скоростью света. Все звезды в ночном небе, в том числе наше Солнце - лишь некоторые из жителей этой галактики. Помимо нашей собственной галактики, существует огромное количество других галактик.

Расстояния между звездами настолько огромны, что путешествие до самой ближайшей звезды от Солнца может занять 4 года, и это еще учитывая передвижение со скоростью света. Космические аппараты Пионер-10, Пионер-11, Вояджер-1 и Вояджер-2 станут самыми первыми объектами, сделанными руками человека, которые покинут Солнечную Систему.

Эти корабли расширили известные пределы Солнечной Системы и были созданы в надежде найти гелиопаузу, границу-предел, который знаменует полное торможение солнечного ветра и начало межзвездного пространства. Оба космических аппарата должны проработать еще 25-30 лет, отправляя на Землю информацию о магнитных полях и межзвездных частицах., после того как покинули пределы нашей Солнечной Системы.

Спиральная галактика NGC 7331 очень похожа на наш Млечный Путь

«Золотая» пластинка» за пределами Солнечной системы

В случае обнаружения в Космосе разумных форм жизни, НАСА снабдила оба корабля аудио-диском под названием «Звуки Земли». 12-дюймовая медная пластинка содержит приветствия землян на 60 языках, музыку нескольких разных культур, звуки природы: океана, грозы, щебетанье птиц, песню кита и др. Она могла бы носить название «Величайшие Хиты планеты Земля».

Доска, установленная на борту Пионера и Вояджера, которая показывает местоположение Земли в Солнечной системе

Также на диске содержится электронная информация, которую достаточно развитая цивилизация сможет конвертировать в картинки, диаграммы, напечатанные послания, включая послание от президента Картера. Оба корабля – Пионер и Вояджер также оснащены доской, показывающей местонахождение нашей солнечной системы по отношению к 14 пульсару и центру Млечного Пути. Эти космические аппараты на самом деле могут стать послами в неизведанное пространство.

Внешние пределы Солнечной системы

Когда мы приблизились к внешним пределам Солнечной Системы, мы не нашли там ничего, кроме сплошной пустоты. За пределами нашей родной системы лежат великие загадки глубокого космоса. Расстояние тут настолько велико, что просто завораживает. Самая ближайшая звезда находится на расстоянии 4-х световых лет. Это значит, что потребуется лететь 4 года со скоростью света, чтоб только добраться до нее.

Необходимо преодолевать расстояние в 186,000 миль в секунду. Мы можем только смотреть в эту пустоту при помощи телескопов и чувствовать себя маленькими и ничтожными перед всей этой бесконечностью. На этом наше путешествие по Солнечной Системе заканчивается.

o-kosmose.net

Космическая связь. Центры, системы и развитие космической связи

Сегодня уже никого не удивляет множество спутниковых тарелок на крышах жилых домов. Космическая связь прочно вошла в жизнь обычного обывателя. Даже в отдаленных районах теперь есть возможность смотреть телепередачи и пользоваться услугами интернета, при этом имея высокий уровень сигнала. Но все это стало возможным благодаря работе центров космической связи, о которых и пойдет речь в данной статье.космическая связь

Всемирная сеть

В современном мире сеть опоясывает весь мир. В России возможность принимать качественные телевизионные сигналы обеспечивает Федеральное государственное унитарное предприятие «Космическая связь». Это одно из десяти самых крупных спутниковых операторов в мире, с собственным центром компрессии телепрограмм. Кроме того, оно обеспечивает мультиплексирование цифровых потоков, формирует пакеты федеральных программ теле- и радиовещания.

Космическая составляющая

Предприятие состоит из орбитальной группировки из 12 спутников всех диапазонов. Зоной обслуживания спутников является вся территория России, СНГ, Европы, Африки и Ближнего Востока, Австралия, Северная и Южная Америки, а также Азиатско-Тихоокеанского региона. Орбитальное расположение космических аппаратов на дуге орбиты – от 14° западной долготы до 145° восточной долготы.

Земная компонента

Инфраструктура, которая находится на земле, - это пять центров космической связи. Расположены они по всей территории России. В своей деятельности предприятие руководствуется Федеральной целевой программой развития телерадиовещания в Российской Федерации на 2009-2018 годы. Спектр предоставляемых услуг очень широк:

  • управление, космическая связь и мониторинг космических структур и аппаратов;
  • связь и вещание (теле- и радиовещание, цифровое и спутниковое телевидение) для 52 стран;
  • правительственная и президентская связь;
  • магистральная и морская связь.центр космической связи

Системы космической связи

Передача информации по каналу Земля – космический спутник и обратно осуществляется различными способами. В космосе используются телеметрические, телефонные, телеграфные, телевизионные системы. Наиболее популярна система радиосвязи. Основные отличительные черты космической связи с летательными космическими объектами следующие:

  • постоянно меняющееся положение космических летательных аппаратов;
  • непрерывное изменение частоты сигнала на приеме;
  • ограниченные зоны прямой видимости с наземными пунктами связи;
  • ограничения мощности передатчиков, расположенных на космических летательных аппаратах;
  • огромная дальность связи.

Развитие космической связи

Всем известно, что первая связь с человеком в космосе осуществилась 12 апреля 1961 года. Космонавтом был Юрий Гагарин, на протяжении всего его полета поддерживалась устойчивая двусторонняя телефонно-телеграфная связь Земли и космического корабля «Восток» в диапазоне метровых и декаметровых волн.

В дальнейшем космическая связь с землей усовершенствовалась, и уже в августе 1961 года во время полета космонавта Г.С. Титова появилось с уменьшенным до 10 кадров в секунду телевизионное изображение. Сегодня применяются телевизионные системы обычного стандарта, а дальность связи достигает 350 миллионов километров (при полетах на Марс).

Технологическая и экономическая составляющая

Срок службы спутника на орбите составляет около 15 лет. За это время происходит развитие новых технологий связи. Один спутник с выводом на орбиту стоит до 230 миллионов долларов и задача владельца – это запустить и эффективно использовать его как объект аренды. В России всего две крупные корпорации, которые могут себе позволить иметь спутник на геостационарной орбите – ФГУП «Космическая связь» и ОАО «Газпром космические системы».системы космической связи

Проблемы коротких волн

Радиосвязь с космическими объектами и самолетами, находящимися на расстояниях более 1 000 километров, ведется в коротковолновом диапазоне. Но в современном мире этого диапазона уже не хватает. Причины такого положения следующие:

  • в коротковолновом диапазоне без значительных помех могут работать порядка тысячи радиостанций, а их сегодня работает в разы больше.
  • Все возрастающий уровень помех требует использования более мощных передатчиков.
  • Принципиальный дефект такого диапазона – многолучевое распространение волн и эффект замирания сигнала в точке приема. Это делает практически невозможной связь в этом диапазоне не очень больших расстояниях.

Ультракороткий волновой диапазон менее загружен, но прием осуществляется только в зоне видимости.развитие космической связи

Выход – спутники

Именно наличие ретранслятора сигнала в космосе, а именно на спутниках, дает перспективы и открывает новые возможности для развития космической связи. Она сможет обеспечить надежную связь с удаленными объектами в космосе и покрыть поверхность планеты надежной радио- и телевизионной магистральной сеткой. На спутниках могут быть установлены активные и пассивные ретрансляторы сигнала, а сами спутники могут быть как стационарные (неподвижные относительно Земли), так и летающие на низких орбитах.

fb.ru

Космическая система - это... Что такое Космическая система?

 Космическая система

"...Космическая система: любая группа действующих совместно земных и / или космических станций, использующих космическую радиосвязь для определенных целей..."

Источник:

"РЕГЛАМЕНТ РАДИОСВЯЗИ" (Извлечение)

Официальная терминология. Академик.ру. 2012.

  • Космическая ракета-носитель
  • Космическая станция

Смотреть что такое "Космическая система" в других словарях:

  • космическая система — 1 космическая система; КС: Совокупность одного или нескольких космических комплексов и специальных комплексов, предназначенных для решения целевых задач. Источник: ГОСТ Р 53802 2010: Системы и комплексы космические. Термины и определения оригинал …   Словарь-справочник терминов нормативно-технической документации

  • космическая система — kosminė sistema statusas T sritis automatika atitikmenys: angl. space system vok. Raumsystem, n; Weltraumsystem, n rus. космическая система, f pranc. système spatial, m …   Automatikos terminų žodynas

  • Космическая система — 1. Любая группа действующих совместно земных и/или космических станций, использующих космическую радиосвязь для определенных целей Употребляется в документе: МСЭ, 2007 год …   Телекоммуникационный словарь

  • Космическая система дистанционного зондирования Земли \"Кондор-Э\ — Система предназначена для получения высококачественных изображений, необходимых для мониторинга земной поверхности и океанов, экологического мониторинга и эффективного управления природными ресурсами. КС «Кондор Э» на базе малых КА обеспечивает:… …   Википедия

  • Космическая система дистанционного зондирования Земли \"Алмаз-Т\ — Впервые в стране был создан комплекс дистанционного зондирования Земли (ДЗЗ) с использованием бортового локатора с синтезированной апертурой высокого разрешения. Был предназначен для проведения комплексных (в различных диапазонах волн) съемок… …   Википедия

  • космическая система (связи) — Совокупность действующих совместно земных и/или космических станций, использующих космическую радиосвязь для определенных целей. [ОСТ 45.124 2000 ] Тематики службы связи Обобщающие термины спутниковые службы и системы EN space system (of… …   Справочник технического переводчика

  • космическая система передачи — 216 космическая система передачи: Радиосистема передачи, в которой используются космические станции и/или пассивные спутники. Источник: ГОСТ Р 53801 2010: Связь федеральная. Термины и определения оригинал документа Смотри также родственные… …   Словарь-справочник терминов нормативно-технической документации

  • космическая система поиска и спасания — 61 космическая система поиска и спасания; КСПС: Система, состоящая из функционально взаимосвязанных орбитальных и наземных технических средств, а также специальных методических и программно математических средств, предназначенная для поиска и… …   Словарь-справочник терминов нормативно-технической документации

  • Космическая система передачи ВАКСС — 35. Космическая система передачи ВАКСС VAKSS space transmission system Радиосистема передачи ВАКСС, в которой используются космические объекты Источник …   Словарь-справочник терминов нормативно-технической документации

  • Космическая система дистанционного зондирования Земли «Алмаз-Т» — У этого термина существуют и другие значения, см. Алмаз (значения). Алмаз Т (Ресурс Р, индекс ГУКОС: 11Ф668)  космический комплекс радиолокационного дистанционного зондирования Земли (ДЗЗ) с использованием первой в СССР орбитальной станции с …   Википедия

official.academic.ru