Жидкий гелий. Гелий 3 википедия


Гелий-три — энергия будущего

Гелий-три — энергия будущего

Гелий-три. Странное и непонятное словосочетание. Тем не менее чем дальше, тем больше мы будем слышать его. Потому что, по мнению специалистов, именно гелий-три спасет наш мир от надвигающегося энергетического кризиса. И в этом предприятии активнейшая роль отводится России.

«Мы говорим сейчас о термоядерной энергетике будущего и новом экологическом типе топлива, которое нельзя добыть на Земле. Речь идет о промышленном освоении Луны для добычи гелия-3».

Это высказывание главы ракетно-космической корпорации «Энергия» Николая Севастьянова было воспринято российскими научными обозревателями как заявка на формирование нового «национального проекта».

Ведь по сути, одной из главных функций государства, особенно в XX веке, было как раз формулирование перед обществом задач на грани воображения. Это касалось и советского государства: электрификация, индустриализация, создание атомной бомбы, первый спутник, поворот рек.

Сегодня в РФ государство пытается, но не может сформулировать задачи на грани невозможного. Государству нужно, чтобы кто-то показал ему общенациональный проект и обосновал выгоды, которые из этого проекта в теории проистекают. Программа освоения и добычи гелия-3 с Луны на Землю с целью снабжения термоядерной энергетики топливом идеально отвечает этим требованиям.

«Я просто думаю, что есть дефицит в какой-то крупной технологической задаче, — подчеркнул в интервью доктор физико-математических наук, ученый секретарь Института космических исследований РАН Александр Захаров. — Может быть, из-за этого и возникли в последнее время все эти разговоры о добыче на Луне гелия-3 для термоядерной энергетики. Если Луна — источник полезных ископаемых, и оттуда везти этот гелий-3, а на Земле не хватает энергии… Все это понятно, звучит очень красиво. И под это легко, может быть, уговорить влиятельных людей выделить деньги. Я думаю, что это так».

Зачем нужен гелий-3?

Перспективная термоядерная энергетика, использующая в качестве основы реакцию синтеза дейтерий-тритий, хотя и более безопасна, чем энергетика деления ядра атома, которая используется на современных АЭС, все же имеет ряд существенных недостатков.

  • Во-первых, при этой реакции выделяется куда большее (на порядок!) число высокоэнергетичных нейтронов. Столь интенсивного нейтронного потока ни один из известных материалов не может выдержать свыше шести лет — при том, что имеет смысл делать реактор с ресурсом как минимум в 30 лет. Следовательно, первую стенку тритиевого термоядерного реактора будет необходимо заменять — а это очень сложная и дорогостоящая процедура, связанная к тому же с остановкой реактора на довольно длительный срок.
  • Во-вторых, от мощного нейтронного излучения необходимо экранировать магнитную систему реактора, что усложняет и, соответственно, удорожает конструкцию.
  • В-третьих, многие элементы конструкции тритиевого реактора после окончания эксплуатации будут высокоактивными и потребуют захоронения на длительный срок в специально созданных для этого хранилищах.

В случае же использования в термоядерном реакторе дейтерия с изотопом гелия-3 вместо трития большинство проблем удается решить. Интенсивность нейтронного потока падает в 30 раз — соответственно, можно без труда обеспечить срок службы в 30-40 лет. После окончания эксплуатации гелиевого реактора высокоактивные отходы не образуются, а радиоактивность элементов конструкции будет так мала, что их можно захоронить буквально на городской свалке, слегка присыпав землей.

Гелий-три — энергия будущего

В чем же проблема? Почему мы до сих пор не используем такое выгодное термоядерное топливо?

Прежде всего, потому, что на нашей планете этого изотопа чрезвычайно мало. Рождается он на Солнце, отчего иногда называется «солнечным изотопом». Его общая масса там превышает вес нашей планеты. В окружающее пространство гелий-3 разносится солнечным ветром. Магнитное поле Земли отклоняет значительную часть этого ветра, а потому гелий-3 составляет лишь одну триллионную часть земной атмосферы — примерно 4000 т. На самой Земле его еще меньше — около 500 кг.

На Луне этого изотопа значительно больше. Там он вкрапляется в лунный грунт «реголит», по составу напоминающий обычный шлак. Речь идет об огромных — практически неисчерпаемых запасах!

Высокое содержание гелия-3 в лунном реголите еще в 1970 году обнаружил физик Пепин, изучая образцы грунта, доставленные американскими космическими кораблями серии «Аполлон». Однако это открытие не привлекало внимания вплоть до 1985 года, когда физики-ядерщики из Висконсинского университета во главе с Дж.Кульчински «переоткрыли» лунные запасы гелия.

Анализ шести образцов грунта, привезенных экспедициями «Аполлон», и двух образцов, доставленных советскими автоматическими станциями «Луна», показал, что в реголите, покрывающем все моря и плоскогорья Луны, содержится до 106 т гелия-3, что обеспечило бы потребности земной энергетики, даже увеличенной по сравнению с современной в несколько раз, на тысячелетие! По современным прикидкам, запасы гелия-3 на Луне на три порядка больше — 109 т.

Кроме Луны, гелий-3 можно найти в плотных атмосферах планет-гигантов, и, по теоретическим оценкам, запасы его только на Юпитере составляют 1020 т, чего хватило бы для энергетики Земли до скончания времен.

Проекты добычи гелия-3

Реголит покрывает Луну слоем толщиной в несколько метров. Реголит лунных морей богаче гелием, чем реголит плоскогорий. 1 кг гелия-3 содержится приблизительно в 100 000 т реголита.

Следовательно для того, чтобы добыть драгоценный изотоп, необходимо переработать огромное количество рассыпчатого лунного грунта.

С учетом всех особенностей технология добычи гелия-3 должна включать следующие процессы:

1. Добыча реголита.

Специальные «комбайны» будут собирать реголит с поверхностного слоя толщиною около 2 м и доставлять его на пункты переработки или перерабатывать непосредственно в процессе добычи.

2. Выделение гелия из реголита.

При нагреве реголита до 600?С выделяется (десорбируется) 75% содержащегося в реголите гелия, при нагреве до 800?С — почти весь гелий. Нагрев пыли предлагается вести в специальных печах, фокусируя солнечный свет либо пластмассовыми линзами, либо зеркалами.

3. Доставка на Землю космическими кораблями многоразового использования.

При добыче гелия-3 из реголита извлекаются также многочисленные вещества: водород, вода, азот, углекислый газ, азот, метан, угарный газ, — которые могут быть полезны для поддержания лунного промышленного комплекса.

Проект первого лунного комбайна, предназначенного для переработки реголита и выделения из него изотопа гелия-3, был предложен еще группой Дж.Кульчински. В настоящее время частные американские компании разрабатывают несколько прототипов, которые, видимо, будут представлены на конкурс после того, как НАСА определится с чертами будущей экспедиции на Луну.

Понятно, что, кроме доставки комбайнов на Луну, там придется возвести хранилища, обитаемую базу (для обслуживания всего комплекса оборудования), космодром и многое другое. Считается, тем не менее, что высокие затраты на создание развитой инфраструктуры на Луне окупятся сторицей в плане того, что грядет глобальный энергетический кризис, когда от традиционных видов энергоносителей (уголь, нефть, природный газ) придется отказаться.

Главная технологическая проблема

Гелий-три — энергия будущего

На пути к созданию энергетики на основе гелия-3 есть одна немаловажная проблема. Дело в том, что реакцию дейтерий-гелий-3 осуществить гораздо сложнее, чем реакцию дейтерий-тритий.

В первую очередь, необычайно трудно поджечь смесь этих изотопов. Расчетная температура, при которой пойдет термоядерная реакция в дейтерий-тритиевой смеси, — 100-200 миллионов градусов. При использовании гелия-3 требуемая температура на два порядка выше. Фактически мы должны зажечь на Земле маленькое солнце.

Однако история развития ядерной энергетики (последние полвека) демонстрирует увеличение генерируемых температур на порядок в течение 10 лет. В 1990 году на европейском токамаке JET уже жгли гелий-3, при этом полученная мощность составила 140 кВт. Примерно тогда же на американском токамаке TFTR была достигнута температура, необходимая для начала реакции в дейтерий-гелиевой смеси.

Впрочем, зажечь смесь еще полдела. Минус термоядерной энергетики — сложность получения практической отдачи, ведь рабочим телом является нагретая до многих миллионов градусов плазма, которую приходится удерживать в магнитном поле.

Эксперименты по приручению плазмы проводятся уже многие десятилетия, но лишь в конце июня прошлого года в Москве представителями ряда стран было подписано соглашение о строительстве на юге Франции в городе Кадараш Международного экспериментального термоядерного реактора (ITER) — прототипа практической термоядерной электростанции. В качестве топлива ITER будет использовать дейтерий с тритием.

Термоядерный реактор на гелии-3 будет конструктивно сложнее, чем ITER, и пока его нет даже в проектах. И хотя специалисты надеются, что прототип реактора на гелии-3 появится в ближайшие 20-30 лет, пока эта технология остается чистейшей фантастикой.

Вопрос добычи гелия-3 анализировался экспертами в ходе слушаний по вопросам будущего исследования и освоения Луны, состоявшихся в апреле 2004 года в Подкомитете по космосу и аэронавтике комитета по науке палаты депутатов Конгресса США. Их вывод был однозначен: даже в отдаленном будущем добыча гелия-3 на Луне совершенно невыгодна.

Как отметил Джон Логсдон, директор Института космической политики из Вашингтона: «Космическое сообщество США не рассматривает добычу гелия-3 в качестве серьезного предлога для возвращения на Луну. Лететь туда за этим изотопом все равно что пятьсот лет назад отправить Колумба в Индию за ураном. Привезти-то он его может, и привез бы, только еще несколько сотен лет никто не знал бы, что с ним делать».

Добыча гелия-3 как национальный проект

«Мы говорим сейчас о термоядерной энергетике будущего и новом экологическом типе топлива, которое нельзя добыть на Земле. Речь идет о промышленном освоении Луны для добычи гелия-3».

Это высказывание главы ракетно-космической корпорации «Энергия» Николая Севастьянова было воспринято российскими научными обозревателями как заявка на формирование нового «национального проекта».

Ведь по сути, одной из главных функций государства, особенно в XX веке, было как раз формулирование перед обществом задач на грани воображения. Это касалось и советского государства: электрификация, индустриализация, создание атомной бомбы, первый спутник, поворот рек.

Сегодня в РФ государство пытается, но не может сформулировать задачи на грани невозможного. Государству нужно, чтобы кто-то показал ему общенациональный проект и обосновал выгоды, которые из этого проекта в теории проистекают. Программа освоения и добычи гелия-3 с Луны на Землю с целью снабжения термоядерной энергетики топливом идеально отвечает этим требованиям.

«Я просто думаю, что есть дефицит в какой-то крупной технологической задаче, — подчеркнул в интервью доктор физико-математических наук, ученый секретарь Института космических исследований РАН Александр Захаров. — Может быть, из-за этого и возникли в последнее время все эти разговоры о добыче на Луне гелия-3 для термоядерной энергетики. Если Луна — источник полезных ископаемых, и оттуда везти этот гелий-3, а на Земле не хватает энергии… Все это понятно, звучит очень красиво. И под это легко, может быть, уговорить влиятельных людей выделить деньги. Я думаю, что это так».

Другие статьи:

nlo-mir.ru

ГЕЛИЙ-3 | Энергетика будущего вики

Гелий-3 — более лёгкий из двух стабильных изотопов гелия.

Гелий-3
Общие сведения
Название, символ Гелий-3, 3He
Нейтронов 1
Протонов 2
Свойства нуклида
Атомная масса 3,0160293191(26) а. е. м. 
Избыток массы 14 931,2148(24) кэВ 
Удельная энергия связи (на нуклон) 2 572,681(1) кэВ
Изотопная распространённость 0,000137(3)[2]  %
Период полураспада   стабильный
Родительские изотопы 3H (β−)
Спин и чётность ядра 1/2+

    Состав и строение Править

    Ядро гелия-3(3) (гелион) состоит из двух протонов и одного нейтрона, в отличие отгелия-4, имеющего в составе по два протона и нейтрона. Природная изотопная распространённость гелия-3 составляет 0,000137 % (в атмосфере Земли; в других резервуарах она может очень сильно отличаться в результате природного фракционирования и т. п.). Общее количество гелия-3 в атмосфере Земли оценивается в 35 000 тонн. Оба изотопа гелия постоянно улетучиваются из атмосферы в космос, однако убыль гелия-4 на Земле восполняется за счёт альфа-распада урана, тория и их дочерних нуклидов (альфа-частица — это ядро гелия-4). В отличие от более тяжёлого изотопа, гелий-3 не появляется в процессах радиоактивного распада (за исключением распада космогенного трития). Бо́льшая часть гелия-3 на Земле сохранилась со времён её образования. Он растворён в мантии и постепенно поступает в атмосферу; считается, что его изотопная распространённость в мантии составляет 200—300 частей на миллион частей гелия-4, то есть на 2 порядка больше, чем в атмосфере. Однако, его поступление из мантии в атмосферу (через вулканы и разломы в коре) оценивается всего в несколько килограммов в год. Некоторая часть гелия-3 возникает при распаде трития, в реакциях скалывания на литии (под действием альфа-частиц и космических лучей), а также поступает из солнечного ветра. На Солнце и в атмосферах планет-гигантов первичного гелия-3 значительно больше, чем в атмосфере Земли. В лунном реголите гелий-3 постепенно накапливался в течение миллиардов лет облучения солнечным ветром. В результате тонна лунного грунта содержит 0,01 г гелия-3 и 28 г гелия-4; это изотопное соотношение (~0,04 %) значительно выше, чем в земной атмосфере.

    Существование гелия-3 было предположено австралийским ученым Марком Олифантом во время работы в Кембриджском университетев 1934. Окончательно открыли этот изотоп Луис Альварес и Роберт Корног в 1939.

    Физические свойства Править

    Атомная масса гелия-3 равна 3,016 (у гелия-4 она равна 4,0026, ввиду чего их физические свойства весьма отличаются). Гелий-3 кипит при 3,19 К (гелий-4 — при 4,23 К), его критическая точка равна 3,35 К (у гелия-4 — 5,19 К). Плотность жидкого гелия-3 при температуре кипения и нормальном давлении равна 59 г/л, тогда как у гелия-4 она равна 124,73 г/л, в 2 раза больше. Удельная теплота испаренияравна 26 Дж/моль (у гелия-4 — 82,9 Дж/моль).

    Жидкий гелий-3 Править

    Квантовая жидкость, существенно отличающаяся по свойствам от жидкого гелия-4. Жидкий гелий-3 удалось получить только в 1948 году. В 1972 году в жидком гелии-3 был обнаружен фазовый переход в сверхтекучее состояние при температурах ниже 2,6 мК и при давлении 34 атм. Ранее считалось, что сверхтекучесть, как и сверхпроводимость — явления, характерные для бозе-конденсата, то есть кооперативные явления в среде с целочисленным спином объектов. За открытие сверхтекучести гелия-3 в 1996 г. была присужденаНобелевская премия по физике Дугласу Ошерову, Роберту Ричардсону и Дэвиду Ли. В 2003 году Нобелевской премией по физикеотмечены Алексей Алексеевич Абрикосов, Виталий Лазаревич Гинзбург и Энтони Леггет, в том числе и за создание теории сверхтекучести жидкого гелия-3.

    Счётчики нейтронов Править

    Газовые счётчики, наполненные гелием-3, используются для детектирования нейтронов. Это наиболее распространённый метод измерения нейтронного потока. В них происходит реакция

    n + 3He → 3H + 1H + 0,764 МэВ.

    Заряженные продукты реакции — тритон и протон — регистрируются газовым счётчиком, работающим в режиме пропорционального счётчика или счётчика Гейгера-Мюллера.

    Получение сверхнизких температур Править

    Путём растворения жидкого гелия-3 в гелии-4 достигают милликельвиновых температур.

    Медицина Править

    Поляризованный гелий-3 (он может долго храниться) недавно начал использоваться в магнитно-резонансной томографии для получения изображения лёгких с помощью ядерного магнитного резонанса.

    Стоимость Править

    Средняя цена гелия-3 в 2009 году составила 930 USD за литр.

    Гелий-3 как ядерное топливо Править

    Реакция 3Не + D → 4Не + p имеет ряд преимуществ по сравнению с наиболее достижимой в земных условиях дейтериево-тритиевой реакцией T + D → 4Не + n. К этим преимуществам относятся:

    1. В десятки раз более низкий поток нейтронов из зоны реакции, что резко уменьшает наведённую радиоактивность и деградацию конструкционных материалов реактора;
    2. Получаемые протоны, в отличие от нейтронов, легко улавливаются и могут быть использованы для дополнительной генерации электроэнергии, например, в МГД-генераторе;
    3. Исходные материалы для синтеза неактивны и их хранение не требует особых мер предосторожности;
    4. При аварии реактора с разгерметизацией активной зоны радиоактивность выброса близка к нулю.

    К недостаткам гелий-дейтериевой реакции следует отнести значительно более высокий температурный порог. Необходимо достигнуть температуры приблизительно в миллиард кельвинов, чтобы она могла начаться.

    В настоящее время гелий-3 не добывается из природных источников, а создаётся искусственно, при распаде трития. Последний производился для термоядерного оружия путём облучения бора-10 и лития-6 в ядерных реакторах.

    Планы добычи гелия-3 на Луне Править

    Гелий-3 является побочным продуктом реакций, протекающих на Солнце.

    Другое дело — Луна, у которой нет атмосферы. В результате этого ценного вещества там находится до 10 млн тонн (по минимальным оценкам — 500 тысяч тонн). При термоядерном синтезе, когда в реакцию вступает 1 тонна гелия-3 с 0,67 тоннами дейтерия, высвобождается энергия, эквивалентная сгоранию 15 млн тонн нефти (однако на настоящий момент не изучена техническая возможность осуществления данной реакции). Следовательно, населению нашей планеты лунного ресурса гелия-3 должно хватить примерно на пять тысячелетий. Основной проблемой остаётся реальность добычи гелия из лунного реголита. Как упомянуто выше, содержание гелия-3 в реголите составляет ~1 г на 100 т. Поэтому для добычи тонны этого изотопа следует переработать не менее 100 млн тонн грунта.

    В фантастических произведениях (играх, фильмах, аниме) гелий-3 иногда выступает в качестве основного топлива и как ценный ресурс, добываемый в том числе на Луне.

    Основой сюжета британского научно-фантастического фильма 2009 года «Луна 2112», является работа горнодобывающего комплекса компании «Лунар». Комплекс обеспечивает добычу изотопа гелий-3, с помощью которого удалось остановить катастрофический энергетический кризис на Земле.

    В комедийном боевике «Железное небо» гелий-3, полученный из реголита, использовался в качестве топлива для межпланетных цеппелинов.

    В песне британской рок-группы Muse "Explorers" есть строчка "Fuse Helium-3 our last hope".

    ru.energetika.wikia.com

    3 - это... Что такое Гелий-3?

    Гелий-3 — самый лёгкий из стабильных изотопов гелия.

    Состав и строение

    Ядро гелия-3(3) (гелион) состоит из двух протонов и одного нейтрона, в отличие от гелия-4, имеющего в составе по два протона и нейтрона. Природная изотопная распространённость гелия-3 составляет 0,000137 % (в атмосфере Земли; в других резервуарах она может очень сильно отличаться в результате природного фракционирования и т. п.)[2]. Общее количество гелия-3 в атмосфере Земли оценивается в 35 000 тонн. Оба изотопа гелия постоянно улетучиваются из атмосферы в космос, однако убыль гелия-4 на Земле восполняется за счёт альфа-распада урана, тория и их дочерних нуклидов (альфа-частица — это ядро гелия-4). В отличие от более тяжёлого изотопа, гелий-3 не появляется в процессах радиоактивного распада (за исключением распада космогенного трития). Бо́льшая часть гелия-3 на Земле сохранилась со времён её образования. Он растворён в мантии и постепенно поступает в атмосферу; считается, что его изотопная распространённость в мантии составляет 200—300 частей на миллион частей гелия-4, то есть на 2 порядка больше, чем в атмосфере. Однако его поступление из мантии в атмосферу (через вулканы и разломы в коре) оценивается всего в несколько килограмм в год. Некоторая часть гелия-3 возникает при распаде трития, в реакциях скалывания на литии (под действием альфа-частиц и космических лучей), а также поступает из солнечного ветра. На Солнце и в атмосферах планет-гигантов первичного гелия-3 значительно больше, чем в атмосфере Земли. В лунном реголите гелий-3 постепенно накапливался в течение миллиардов лет облучения солнечным ветром. В результате тонна лунного грунта содержит 0,01 г гелия-3 и 28 г гелия-4; это изотопное соотношение (~0,04 %) значительно выше, чем в земной атмосфере.

    Открытие

    Существование гелия-3 было предположено австралийским ученым Марком Олифантом во время работы в Кембриджском университете в 1934. Окончательно открыли этот изотоп Луис Альварес и Роберт Корног в 1939.

    Физические свойства

    Атомная масса гелия-3 равна 3,016 (у гелия-4 она равна 4,0026, ввиду чего их физические свойства весьма отличаются). Гелий-3 кипит при 3,19 К (гелий-4 — при 4,23 К), его критическая точка равна 3,35 К (у гелия-4 — 5,19 К). Плотность жидкого гелия-3 при температуре кипения и нормальном давлении равна 59 г/л, тогда как у гелия-4 она равна 124,73 г/л, в 2 раза больше. Удельная теплота испарения равна 26 Дж/моль (у гелия-4 — 82,9 Дж/моль).

    Жидкий гелий-3

    Квантовая жидкость, существенно отличающаяся по свойствам от жидкого гелия-4. Жидкий гелий-3 удалось получить только в 1948 году. В 1972 году в жидком гелии-3 был обнаружен фазовый переход в сверхтекучее состояние при температурах ниже 2,6 мК и при давлении 34 атм. Ранее считалось, что сверхтекучесть, как и сверхпроводимость — явления, характерные для бозе-конденсата, то есть кооперативные явления в среде с целочисленным спином объектов. За открытие сверхтекучести гелия-3 в 1996 г. была присуждена Нобелевская премия по физике Дугласу Ошерову, Роберту Ричардсону и Дэвиду Ли. В 2003 году Нобелевской премией по физике отмечены Алексей Алексеевич Абрикосов, Виталий Лазаревич Гинзбург и Энтони Леггет, в том числе и за создание теории сверхтекучести жидкого гелия-3.[3]

    Использование

    Счётчики нейтронов

    Газовые счётчики, наполненные гелием-3, используются для детектирования нейтронов. Это наиболее распространённый метод измерения нейтронного потока. В них происходит реакция

    n + 3He → 3H + 1H + 0,764 МэВ.

    Заряженные продукты реакции — тритон и протон — регистрируются газовым счётчиком, работающим в режиме пропорционального счётчика или счётчика Гейгера-Мюллера.

    Получение сверхнизких температур

    Путём растворения жидкого гелия-3 в гелии-4 достигают милликельвиновых температур.

    Медицина

    Поляризованный гелий-3 (он может долго храниться) недавно начал использоваться в магнитно-резонансной томографии для получения изображения лёгких с помощью ядерного магнитного резонанса.

    Стоимость

    Средняя цена гелия-3 в 2009 году составила $930 за литр[4].

    Гелий-3 как ядерное топливо

    Реакция 3Не + D → 4Не + p имеет ряд преимуществ по сравнению с наиболее достижимой в земных условиях дейтериево-тритиевой реакцией T + D → 4Не + n. К этим преимуществам относятся:

    1. В десятки раз более низкий поток нейтронов из зоны реакции, что резко уменьшает наведённую радиоактивность и деградацию конструкционных материалов реактора;
    2. Получаемые протоны, в отличие от нейтронов, легко улавливаются и могут быть использованы для дополнительной генерации электроэнергии, например, в МГД-генераторе;
    3. Исходные материалы для синтеза неактивны и их хранение не требует особых мер предосторожности;
    4. При аварии реактора с разгерметизацией активной зоны радиоактивность выброса близка к нулю[источник не указан 190 дней].

    К недостаткам гелий-дейтериевой реакции следует отнести значительно более высокий температурный порог. Необходимо достигнуть температуры приблизительно в миллиард градусов, чтобы она могла начаться[источник не указан 1175 дней].

    В настоящее время гелий-3 не добывается из природных источников, а создаётся искусственно, при распаде трития. Последний производился для термоядерного оружия путём облучения бора-10 и лития-6 в ядерных реакторах.

    Планы добычи гелия-3 на Луне

    Гелий-3 является побочным продуктом реакций, протекающих на Солнце.[источник не указан 554 дня] На Земле его добывают в очень небольших количествах, исчисляемых несколькими десятками граммов за год.

    Другое дело — Луна, у которой нет атмосферы. В результате, этого ценного вещества там находится до 10 млн тонн (по минимальным оценкам — 500 тысяч тонн[5]). При термоядерном синтезе, когда в реакцию вступает 1 тонна гелия-3 с 0,67 тоннами дейтерия, высвобождается энергия, эквивалентная сгоранию 15 млн тонн нефти[6] (однако на настоящий момент не изучена техническая возможность осуществления данной реакции). Следовательно, населению нашей планеты лунного ресурса гелия-3 должно хватить как минимум на ближайшее тысячелетие. Основной проблемой остаётся реальность добычи гелия из лунного реголита. Как упомянуто выше, содержание гелия-3 в реголите составляет ~1 г на 100 т. Поэтому для добычи тонны этого изотопа следует переработать не менее 100 млн тонн грунта.

    В фантастике

    • В игре Mass Effect человечество использовало гелий-3 как основное топливо.
    • В игре EVE Online раса Амарр добывает гелий-3 из космического льда и использует его как топливо для своих звездных баз, а также для прыжковых двигателей.
    • В аниме Planetes люди добывают гелий-3 на Луне и будут использовать его в качестве топлива на корабле «Фон Браун», который отправится к Юпитеру.
    • В аниме Moonlight Mile люди строят станцию на Луне для добычи гелия-3.
    • В фильме Луна 2112 ведется промышленная добыча гелия-3 на Луне, для производства энергии на Земле.
    • В фильме Железное небо астронавты США прилетели на Луну для разведки количества Гелия-3.

    Примечания

    1. ↑ 1 2 3 G. Audi, A.H. Wapstra, and C. Thibault (2003). «The AME2003 atomic mass evaluation (II). Tables, graphs, and references.». Nuclear Physics A 729: 337—676. DOI:10.1016/j.nuclphysa.2003.11.003.
    2. ↑ 1 2 3 4 G. Audi, O. Bersillon, J. Blachot and A. H. Wapstra (2003). «The NUBASE evaluation of nuclear and decay properties». Nuclear Physics A 729: 3–128. DOI:10.1016/j.nuclphysa.2003.11.001.
    3. ↑ Сверхтекучий 3He: ранняя история глазами теоретика — нобелевская лекция Э. Дж. Леггетта, УФН, т. 174, № 11, 2003 г.
    4. ↑ Survey of Critical Use of 3He for Cryogenic Purposes — Northwestern University
    5. ↑ 3D News Колонизация Солнечной системы отменяется (4 марта 2007). Проверено 26 мая 2007.
    6. ↑ http://www.ria.ru/science/20120725/709192459.html // РИА Новости

    Литература

    Эта статья нуждается в дополнительных источниках для улучшения проверяемости.Вы можете помочь улучшить эту статью, добавив ссылки на авторитетные источники.Не подтверждённая источниками информация может быть поставлена под сомнение и удалена.

    dic.academic.ru

    Гелий-3 | Virtual Laboratory Wiki

    Гелий-3 — самый лёгкий из изотопов гелия, один из двух его стабильных изотопов.

      Состав и строение Править

      Ядро гелия-3 (гелион) состоит из двух протонов и одного нейтрона, в отличие от гелия-4, имеющего в составе по два протона и нейтрона. Природная изотопная распространённость гелия-3 составляет 0,000137 % (в атмосфере Земли; в других резервуарах она может очень сильно отличаться в результате природного фракционирования и т. п.). Общее содержание гелия-3 в атмосфере Земли оценивается всего в 35 000 тонн. Оба изотопа гелия постоянно улетучиваются из атмосферы в космос, однако убыль гелия-4 на Земле восполняется за счёт альфа-распада урана, тория и их дочерних нуклидов (альфа-частица — это ядро гелия-4). В отличие от более тяжёлого изотопа, гелий-3 не появляется в процессах радиоактивного распада (за исключением распада космогенного трития). Бо́льшая часть гелия-3 на Земле сохранилась со времён ее образования. Он растворён в мантии и постепенно поступает в атмосферу; считается, что его изотопная распространённость в мантии составляет 200—300 частей на миллион частей гелия-4, то есть на 2 порядка больше, чем в атмосфере. Однако его поступление из мантии в атмосферу (через вулканы и разломы в коре) оценивается всего в несколько кг в год. Некоторая часть гелия-3 возникает при распаде трития, в реакциях скалывания на литии (под действием альфа-частиц и космических лучей), а также поступает из солнечного ветра. На Солнце и в атмосферах планет-гигантов первичного гелия-3 значительно больше, чем в атмосфере Земли. В лунном реголите гелий-3 постепенно накапливался в течение миллиардов лет облучения солнечным ветром. В результате тонна лунного грунта содержит 0,01 г гелия-3 и 28 г гелия-4; это изотопное соотношение (~0,04 %) значительно выше, чем в земной атмосфере.

      Существование гелия-3 было предположено австралийским ученым Марком Олифантом во время работы в Кембриджском университете в 1934. Окончательно открыли этот изотоп Луис Альварес и Роберт Корног в 1939.

      Физические свойства Править

      Атомная масса гелия-3 равна 3,016 (у гелия-4 она равна 4,0026, ввиду чего их физические свойства весьма отличаются). Гелий-3 кипит при 3,19 К (гелий-4 — при 4,23 К), его критическая точка равна 3,35 К (у гелия-4 — 5,19 К). Плотность жидкого гелия-3 при температуре кипения и нормальном давлении равна 59 г/л, тогда как у гелия-4 она равна 124,73 г/л, в 2 раза больше. Удельная теплота испарения равна 26 Дж/моль (у гелия-4 — 82,9 Дж/моль).

      Квантовая жидкость, существенно отличающаяся по свойствам от жидкого гелия-4. См. также Сверхтекучесть. Жидкий гелий-3 удалось получить только в 1948 году. В 1972 году в жидком гелии-3 был обнаружен фазовый переход в сверхтекучее состояние при температурах ниже 2,6 мК и при давлении 34 атм. За открытие сверхтекучести гелия-3 в 1996 г. была присуждена Нобелевская премия по физике Дугласу Ошерову, Роберту Ричардсону и Дэвиду Ли. В 2003 году Нобелевской премией по физике отмечены Алексей Алексеевич Абрикосов, Виталий Лазаревич Гинзбург и Энтони Леггет, в том числе и за создание теории сверхтекучести жидкого гелия-3. [1]

      Счётчики нейтронов Править

      Газовые счётчики, наполненные гелием-3, используются для детектирования нейтронов. Это наиболее распространённый метод измерения нейтронного потока. В них происходит реакция

      n + ³He → ³H + 1H + 0,764 МэВ.

      Заряженные продукты реакции — тритон и протон — регистрируются газовым счётчиком, работающим в режиме пропорционального счётчика или счётчика Гейгера-Мюллера.

      Получение сверхнизких температур Править

      Путём растворения жидкого гелия-3 в гелии-4 достигают милликельвиновых температур.

      Медицина Править

      Поляризованный гелий-3 (он может долго храниться) недавно начал использоваться в магнитно-резонансной томографии для получения изображения лёгких с помощью ядерного магнитного резонанса.

      Гелий-3 как ядерное топливо Править

      Реакция 3Не + D → 4Не + p имеет ряд преимуществ по сравнению с наиболее достижимой в земных условиях дейтериево-тритиевой реакцией T + D → 4Не + n. К этим преимуществам относятся:

      1. На порядки более низкий поток нейтронов из зоны реакции, что резко уменьшает наведённую радиоактивность и деградацию конструкционных материалов реактора;
      2. Получаемые протоны, в отличие от нейтронов, легко улавливаются и могут быть использованы для дополнительной генерации электроэнергии;
      3. Исходные материалы для синтеза неактивны и их хранение не требует особых мер предосторожности;
      4. При аварии реактора с разгерметизацией активной зоны радиоактивность выброса близка к нулю.

      К недостаткам гелий-дейтериевой реакции следует отнести значительно более высокий температурный порог. Необходимо достигнуть миллиард градусов, чтобы она могла начаться.

      В настоящее время гелий-3 не добывается из природных источников, а создаётся искусственно, при распаде трития. Последний производился для термоядерного оружия путём облучения бора-10 и лития-6 в ядерных реакторах.

      Планы добычи гелия-3 на Луне Править

      Гелий-3 является побочным продуктом реакций, протекающих на Солнце. На Земле его добывают в очень небольших количествах, исчисляемых несколькими десятками граммов за год.

      Другое дело — Луна, у которой нет атмосферы. В результате чего ценного вещества там находится до 10 млн тонн (по минимальным оценкам — 500 тысяч тонн[2]), в то время как на Земле его запасы оцениваются в 500—1000 килограмм.

      При термоядерном синтезе, когда в реакцию вступает 1 тонна гелия-3 с 0,67 тоннами дейтерия, высвобождается энергия, эквивалентная сгоранию 15 млн т. нефти (однако на настоящий момент не изучена техническая возможность осуществления данной реакции). Как сообщил президент РКК «Энергия» Н. Н. Севастьянов, «Постоянную станцию на Луне мы планируем создать уже к 2015 году, а с 2020 года может начаться промышленная добыча на спутнике Земли редкого изотопа — гелия-3»

      Исходя из чего, населению нашей планеты лунного ресурса гелия-3 должно хватить как минимум на ближайшее тысячелетие. Основной проблемой остаётся реальность добычи гелия из лунного реголита. Как упомянуто выше, содержание гелия-3 в реголите составляет ~1 г на 100 т. Поэтому для добычи тонны этого изотопа следует переработать не менее 100 млн тонн грунта.

      Продажная цена на гелий-3 компании Спектра (Spectra) составляет $825 за 5 литров[3], что в пересчёте на граммы, означает приблизительно $1200 за грамм ($1,2 млрд за тонну, хотя на данный момент вряд ли возможна продажа такого количества по данной цене).

      Критика планов добычи гелия-3 на Луне Править

      В то же время критики планов добычи гелия-3 на Луне, не оспаривая его достоинства как термоядерного топлива, отмечают следующие обстоятельства:

      • Себестоимость производства гелия-3 с помощью синтеза на ядерных реакторах деления (через тритий) намного ниже космической;
      • Существующие методы вывода тяжёлых грузов на орбиту недостаточно надёжны и экологически небезопасны, что может привести к сильному разрушению озонового слоя и загрязнению атмосферы и земной поверхности остатками ракетного топлива и продуктами его сгорания, а также отработанными ракетными ступенями и потерпевшими аварию головными частями;
      • Реализация длительной, крайне дорогостоящей и плохо поддающейся аудиту лунной программы может привести к неоправданному перерасходу и даже расхищению огромных денежных средств.

      Вместо этого ряд специалистов предлагает разработать программу дешёвого и эффективного производства необходимого объёма гелия-3 из широко распространённого в природе лития-6 на существующих атомных электростанциях.

      1. ↑ Сверхтекучий ³He: ранняя история глазами теоретика — нобелевская лекция Э. Дж. Леггетта, УФН, т. 174, № 11, 2003 г.
      2. ↑ 3D News Колонизация Солнечной системы отменяется (4 марта 2007). Проверено 26 мая 2007.
      3. ↑ Spectra Spectra Gases. Catalog of products. Проверено 27 мая 2007.

      Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Гелий-3. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .

      ru.vlab.wikia.com

      Гелий-3 | Mass Effect Wiki

      Гелий-3 является изотопом гелия, который используется для синтеза в ядерных реакторах, а также в качестве топлива для звездолетов. По этой причине он является ключевым ресурсом в галактической экономике. Гелий-3 часто можно найти в атмосферах газовых гигантов, откуда его легко и дешево добывать. 

        Историческое использованиеПравить

        Археологические данные свидетельствуют о использовании гелия-3 протеанами, так как есть свидетельства добычи гелия-3 на планетах, таких как Зафе и Шарринг в системах, которые населяли протеане. Также считается, что древняя цивилизация артенни добывала гелий-3 на Гаелоне.

        До Восстания кроганов на планете Вард кроганы добывали гелий-3. В начале Восстания Спектры разрушили станцию по добыче гелия, что стало фатальным для флота кроганов. Позже, с помощью саларианцев, станция была восстановлена.

        Человеческий периодПравить

        Луна стала одним из первых источников гелия-3 для людей. Добыча в конце концов распространилась на газовых гигантов Солнечной системы, особенно на Сатурн и Уран. Эльдфель-Эшланд Энерджи впервые продемонстрировала добычу гелия-3 на Сатурне в 2137 году. Нептун оставался неразвитым к этому времени из-за удаленности. Уран остается основным производителем гелия-3 для Альянса Систем, из-за его близости к Земле, а также потому, что из всех газовых гигантов Солнечной системы у него меньшая гравитация, что делает добычу гелия легче и дешевле.

        После обнаружения ретрансляторов, добыча началась на планетах вне Солнечной системы. Такие планеты, как Сион и Борр разрабатываются из-за их близости к другим колониям.

        Для того чтобы помочь Альянсу Систем в расширении и поддержании его флота, капитан Шепард может обнаружить много планет для добычи гелия-3 в рамках задания Траверс: ценные полезные ископаемые. 

        АктивнаяПравить

        НеактивнаяПравить

        ru.masseffect.wikia.com

        Жидкий гелий — Википедия

        Жи́дкий ге́лий — жидкое агрегатное состояние гелия. Представляет собой бесцветную прозрачную жидкость, кипящую при температуре 4,2 К (для изотопа 4He при нормальном атмосферном давлении)[1][2]. Плотность жидкого гелия при температуре 4,2 К составляет 0,13 г/см³. Обладает малым показателем преломления, из-за чего его трудно увидеть.

        При определённых условиях жидкий гелий представляет собой квантовую жидкость, то есть жидкость, в макроскопическом объёме которой проявляются квантовые свойства составляющих её атомов. Из-за квантовых эффектов (нулевые колебания), при нормальном давлении гелий не затвердевает даже при абсолютном нуле. Твёрдый гелий в α-фазе удаётся получить лишь при давлении выше 25 атм.

        История исследований[править]

        История получения и исследований жидкого гелия тесно связана с историей развития криогеники.

        • В 1898 году Дьюаром получено около 20 см³ жидкого водорода.
        • В 1906 году Камерлинг-Оннес наладил линию полупромышленного получения жидкого водорода, дающую до 4 литров в час.
        • В 1908 году он же сумел добиться конденсации жидкого гелия в объёме 0,06 литра (Нобелевская премия по физике за 1913 год). Для опыта потребовалось 20 литров жидкого водорода, полученного при помощи линии, созданной двумя годами ранее. Низкие температуры, необходимые для конденсации гелия, были достигнуты при адиабатическом дросселировании водорода (см. эффект Джоуля — Томсона).
        • В 1930 году[3]Виллем Хендрик Кеезом обнаружил наличие фазового перехода в жидком гелии при температуре 2,17 К и давлении насыщенных паров 0,005 МПа. Он назвал фазу, устойчивую выше температуры 2,17 K, гелием-I, а фазу, устойчивую ниже этой температуры — гелием-II. Также он наблюдал связанные с этим аномалии в теплопроводности (и даже называл гелий-II «сверхтеплопроводным»), теплоёмкости, текучести гелия.
        • В 1938 году П. Л. Капица открыл сверхтекучесть гелия-II (Нобелевская премия по физике за 1978 год). Квантовомеханическое объяснение явления было дано Л. Д. Ландау в 1941 году (Нобелевская премия по физике за 1962 год).
        • В 1948 году удалось сжижить и гелий-3.
        • В 1972 году в жидком гелии-3 также был обнаружен фазовый переход. Позже было экспериментально показано, что ниже 2,6 мК и при давлении 34 атм гелий-3 действительно становится сверхтекучим.
        • В 2003 году Нобелевской премией по физике отмечены А. А. Абрикосов, В. Л. Гинзбург и Э. Дж. Леггет, в том числе и за создание теории сверхтекучести жидкого гелия-3.

        Физические свойства[править]

        Физические свойства гелия сильно отличаются у изотопов 4He и 3He:

        Свойство 4He 3He Температура плавления, К Температура кипения, К Минимальное давление плавления, атм Плотность газообразного, кг/м³ Плотность жидкого, кг/м³ Крит. точка tкрит, К pкрит, МПа dкрит, кг/м³
        2,0 (при 3,76 МПа) 1,0 (при 3,87 МПа)
        4,215 3,19
        25 29 (0,3 K)
        0,178 0,134
        145 (при 0 К) 82,35
        5,25 3,35
        0,23 0,12
        69,3 41,3

        Свойства гелия-4[править]

        Жидкий гелий — бозе-жидкость, то есть жидкость, частицы которой являются бозонами.

        Выше температуры 2,17 К гелий-4 ведёт себя как обычная криожидкость, то есть кипит, выделяя пузырьки газа. При достижении температуры 2,17 К (при давлении паров 0,005 МПа — так называемая λ-точка) жидкий 4Не претерпевает фазовый переход второго рода, сопровождающийся резким изменением ряда свойств: теплоёмкости, вязкости, плотности и других. В жидком гелии при температуре ниже температуры перехода одновременно сосуществуют две фазы, Не I и Не II, с сильно различающимися свойствами. Состояние жидкости в фазе гелия-II в некоторой степени аналогично состоянию бозе-конденсата (однако, в отличие от конденсата атомов разреженного газа, взаимодействие между атомами гелия в жидкости достаточно сильно, поэтому теория бозе-конденсата неприменима впрямую к гелию-II).

        Сверхтекучесть и сверхтеплопроводность[править]

        Фазовый переход в гелии хорошо заметен, он проявляется в том, что кипение прекращается, жидкость становится совершено прозрачной. Испарение гелия, конечно, продолжается, но оно идёт исключительно с поверхности. Различие в поведении объясняется необычайно высокой теплопроводностью сверхтекучей фазы (во много миллионов раз выше, чем у Не I). При этом вязкость нормальной фазы остаётся практически неизменной, что следует из измерений вязкости методом колеблющегося диска. С увеличением давления температура перехода смещается в область более низких температур. Линия разграничения этих фаз называется λ-линией.

        Для He II характерна сверхтекучесть — способность протекать без трения через узкие (диаметром менее 100 нм) капилляры и щели. Относительное содержание He II растет с понижением температуры и достигает 100 % при абсолютном нуле температуры — с этим были связаны попытки получения сверхнизких температур путём пропускания жидкого гелия через очень тонкий капилляр, через который пройдет только сверхтекучая компонента. Однако за счёт того, что при близких к абсолютному нулю температурах теплоёмкость также стремится к нулю, добиться существенных результатов не удалось — за счёт неизбежного нагрева от стенок капилляра и излучения.

        За счёт сверхтекучести и достигается аномально высокая теплопроводность жидкого гелия — теплопередача идёт не за счёт теплопроводности, а за счёт конвекции сверхтекучей компоненты в противоток нормальной, которая переносит тепло (сверхтекучая компонента не может переносить тепло). Это свойство открыто в 1938 году П. Л. Капицей.

        « Гелия в промежуточном состоянии между этими двумя в природе не существует: либо он при абсолютном нуле, либо он в другом состоянии, нормальном. Гелий в сверхтекучем состоянии не может давить на заслонку, и вообще сверхтекучая жидкость не может производить никакого давления, так как это жидкость, вязкость которой равняется нулю, — мы её динамическими методами обнаружить не можем. »

        Второй звук[править]

        За счёт одновременного наличия двух фаз в жидком гелии, имеется две скорости звука и специфическое явление — так называемый «второй звук». Второй звук — слабозатухающие колебания температуры и энтропии в сверхтекучем гелии. Скорость распространения второго звука определяется из уравнений гидродинамики сверхтекучей жидкости в двухкомпонентной модели. Если пренебречь коэффициентом теплового расширения (который у гелия аномально мал), то в волне второго звука осциллируют только температура и энтропия, а плотность и давление остаются постоянными. Распространение второго звука не сопровождается переносом вещества.

        Второй звук можно также интерпретировать как колебания концентрации квазичастиц в сверхтекучем гелии. В чистом 4He это колебания в системе ротонов и фононов.

        Существование второго звука было предсказано теоретически Ландау; расчётное значение равнялось 25 м/с. Фактически измеренное значение составляет 19,6 м/с[4].

        Свойства гелия-3[править]

        Жидкий гелий-3 — это ферми-жидкость, то есть жидкость, частицы которой являются фермионами. В таких системах сверхтекучесть может осуществляться при определённых условиях, когда между фермионами имеются силы притяжения, которые приводят к образованию связанных состояний пар фермионов — так называемых куперовских пар (эффект Купера).

        Куперовская пара обладает целым спином, то есть ведёт себя как бозон; поэтому вещество, состоящее из объединённых в куперовские пары фермионов, может переходить в состояние, подобное бозе-конденсату. Сверхтекучесть такого рода осуществляется для электронов в некоторых металлах и носит название сверхпроводимости.

        Аналогичная ситуация имеет место в жидком 3He, атомы которого имеют спин ½ и образуют типичную квантовую ферми-жидкость. Свойства жидкого гелия-3 можно описать как свойства газа квазичастиц-фермионов с эффективной массой примерно в 3 раза большей, чем масса атома 3He. Силы притяжения между квазичастицами в 3He очень малы, лишь при температурах порядка нескольких милликельвинов в 3He создаются условия для образования куперовских пар квазичастиц и возникновения сверхтекучести. Открытию сверхтекучести у 3He способствовало освоение эффективных методов получения низких температур — эффекта Померанчука и магнитного охлаждения. С их помощью удалось выяснить характерные особенности диаграммы состояния 3He при сверхнизких температурах.

        Переход нормальной ферми-жидкости в фазу А представляет собой фазовый переход II рода (теплота фазового перехода равна нулю). В фазе A образовавшиеся куперовские пары обладают спином 1 и отличным от нуля моментом импульса. В ней могут возникать области с общими для всех пар направлениями спинов и моментов импульса. Поэтому фаза А является анизотропной жидкостью. В магнитном поле фаза А расщепляется на две фазы (A1 и A2), каждая из которых также является анизотропной. Переход из сверхтекучей фазы А в сверхтекучую фазу В является фазовым переходом I рода с теплотой перехода около 1,5·10−6 дж/моль. Магнитная восприимчивость 3He при переходе А→В скачком уменьшается и продолжает затем уменьшаться с понижением температуры. Фаза В является, по-видимому, изотропной.

        Хранение и транспортировка[править]

        Как и другие криожидкости, гелий хранят в сосудах Дьюара. Гелий в них всегда хранится под небольшим давлением — за счёт естественного испарения жидкости. Это позволяет в случае небольшой негерметичности не допустить загрязнения гелия снегом из воздуха. Избыточное давление стравливается через клапан. На практике, так как гелий достаточно дорог, то, чтобы не выпускать газ в атмосферу, на головной части дьюара размещается соединительная часть для подсоединения дьюара к гелиевой сети, по которой газообразный гелий собирается для повторного использования. Как правило, на этом же узле крепится манометр для контроля давления и аварийный клапан.

        Гелиевые дьюары переворачивать нельзя, для переливания содержимого применяют специальные сифоны.

        Гелий имеет очень низкую теплоту испарения (в 20 раз меньше, чем у водорода), но зато высокую теплопроводность. Поэтому к качеству теплоизоляции гелиевых дьюаров предъявляются высокие требования. При повреждении вакуумной изоляции жидкость так бурно вскипает, что дьюар может взорваться. Как правило, для снижения потерь гелия на испарение используется «азотная рубашка» — непосредственно в вакуумной полости сосуда Дьюара расположена ещё одна оболочка, которая охлаждается кипящим жидким азотом (температура 77 К). За счёт этого удается существенно сократить теплообмен между гелием и атмосферой.

        Жидкий гелий перевозят в специальных транспортных сосудах, выпускаемыми промышленно. В СССР и позднее в России выпускались сосуды типа СТГ-10, СТГ-25, СТГ-40 и СТГ-100 ёмкостью 10, 25, 40 и 100 литров, соответственно. Эти сосуды широко используются в российских лабораториях и в настоящее время. Сосуды с жидким гелием должны транспортироваться и храниться в вертикальном положении.

        Применение жидкого гелия[править]

        Жидкий гелий применяется в качестве хладагента для получения и поддержания низких и сверхнизких температур (в основном в научных исследованиях):

        • охлаждение сверхпроводящих магнитов в различных научных, технических и медицинских устройствах, к примеру:
        • использование в криостатах растворения[прояснить];
        • криогенные электрические машины[прояснить].

        Научно-популярные ресурсы[править]

        Книги, обзорные статьи[править]

        • Сверхтекучий 3He: ранняя история глазами теоретика — нобелевская лекция Э. Дж. Леггетта, УФН, т. 174, № 11, 2003 г.
        • Г. Воловик, «Universe in a helium droplet», Oxford University Press, 2004, 529 стр., книга доступна на сайте автора (PDF, 3,5 Мб).

        wp.wiki-wiki.ru

        Жидкий гелий — википедия фото

        История исследований

        История получения и исследований жидкого гелия тесно связана с историей развития криогеники.

        • В 1898 году Дьюаром получено около 20 см³ жидкого водорода.
        • В 1906 году Камерлинг-Оннес наладил линию полупромышленного получения жидкого водорода, дающую до 4 литров в час.
        • В 1908 году он же сумел добиться конденсации жидкого гелия в объёме 0,06 литра (Нобелевская премия по физике за 1913 год). Для опыта потребовалось 20 литров жидкого водорода, полученного при помощи линии, созданной двумя годами ранее. Низкие температуры, необходимые для конденсации гелия, были достигнуты при адиабатическом дросселировании водорода (см. эффект Джоуля — Томсона).
        • В 1930 году[3]Виллем Хендрик Кеезом обнаружил наличие фазового перехода в жидком гелии при температуре 2,17 К и давлении насыщенных паров 0,005 МПа. Он назвал фазу, устойчивую выше температуры 2,17 K, гелием-I, а фазу, устойчивую ниже этой температуры — гелием-II. Также он наблюдал связанные с этим аномалии в теплопроводности (и даже называл гелий-II «сверхтеплопроводным»), теплоёмкости, текучести гелия.
        • В 1938 году П. Л. Капица открыл сверхтекучесть гелия-II (Нобелевская премия по физике за 1978 год). Квантовомеханическое объяснение явления было дано Л. Д. Ландау в 1941 году (Нобелевская премия по физике за 1962 год).
        • В 1948 году удалось сжижить и гелий-3.
        • В 1972 году в жидком гелии-3 также был обнаружен фазовый переход. Позже было экспериментально показано, что ниже 2,6 мК и при давлении 34 атм гелий-3 действительно становится сверхтекучим.
        • В 2003 году Нобелевской премией по физике отмечены А. А. Абрикосов, В. Л. Гинзбург и Э. Дж. Леггет, в том числе и за создание теории сверхтекучести жидкого гелия-3.

        Физические свойства

        Физические свойства гелия сильно отличаются у изотопов 4He и 3He:

        Свойство 4He 3He Температура плавления, К Температура кипения, К Минимальное давление плавления, атм Плотность газообразного, кг/м³ Плотность жидкого, кг/м³ Крит. точка tкрит, К pкрит, МПа dкрит, кг/м³
        2,0 (при 3,76 МПа) 1,0 (при 3,87 МПа)
        4,215 3,19
        25 29 (0,3 K)
        0,178 0,134
        145 (при 0 К) 82,35
        5,25 3,35
        0,23 0,12
        69,3 41,3

        Свойства гелия-4

        Жидкий гелий — бозе-жидкость, то есть жидкость, частицы которой являются бозонами.

        Выше температуры 2,17 К гелий-4 ведёт себя как обычная криожидкость, то есть кипит, выделяя пузырьки газа. При достижении температуры 2,17 К (при давлении паров 0,005 МПа — так называемая λ-точка) жидкий 4Не претерпевает фазовый переход второго рода, сопровождающийся резким изменением ряда свойств: теплоёмкости, вязкости, плотности и других. В жидком гелии при температуре ниже температуры перехода одновременно сосуществуют две фазы, Не I и Не II, с сильно различающимися свойствами. Состояние жидкости в фазе гелия-II в некоторой степени аналогично состоянию бозе-конденсата (однако, в отличие от конденсата атомов разреженного газа, взаимодействие между атомами гелия в жидкости достаточно сильно, поэтому теория бозе-конденсата неприменима впрямую к гелию-II).

        Сверхтекучесть и сверхтеплопроводность

        Фазовый переход в гелии хорошо заметен, он проявляется в том, что кипение прекращается, жидкость становится совершено прозрачной. Испарение гелия, конечно, продолжается, но оно идёт исключительно с поверхности. Различие в поведении объясняется необычайно высокой теплопроводностью сверхтекучей фазы (во много миллионов раз выше, чем у Не I). При этом вязкость нормальной фазы остаётся практически неизменной, что следует из измерений вязкости методом колеблющегося диска. С увеличением давления температура перехода смещается в область более низких температур. Линия разграничения этих фаз называется λ-линией.

        Для He II характерна сверхтекучесть — способность протекать без трения через узкие (диаметром менее 100 нм) капилляры и щели. Относительное содержание He II растет с понижением температуры и достигает 100 % при абсолютном нуле температуры — с этим были связаны попытки получения сверхнизких температур путём пропускания жидкого гелия через очень тонкий капилляр, через который пройдет только сверхтекучая компонента. Однако за счёт того, что при близких к абсолютному нулю температурах теплоёмкость также стремится к нулю, добиться существенных результатов не удалось — за счёт неизбежного нагрева от стенок капилляра и излучения.

        За счёт сверхтекучести и достигается аномально высокая теплопроводность жидкого гелия — теплопередача идёт не за счёт теплопроводности, а за счёт конвекции сверхтекучей компоненты в противоток нормальной, которая переносит тепло (сверхтекучая компонента не может переносить тепло). Это свойство открыто в 1938 году П. Л. Капицей.

          Гелия в промежуточном состоянии между этими двумя в природе не существует: либо он при абсолютном нуле, либо он в другом состоянии, нормальном. Гелий в сверхтекучем состоянии не может давить на заслонку, и вообще сверхтекучая жидкость не может производить никакого давления, так как это жидкость, вязкость которой равняется нулю, — мы её динамическими методами обнаружить не можем.  

        Второй звук

        За счёт одновременного наличия двух фаз в жидком гелии, имеется две скорости звука и специфическое явление — так называемый «второй звук». Второй звук — слабозатухающие колебания температуры и энтропии в сверхтекучем гелии. Скорость распространения второго звука определяется из уравнений гидродинамики сверхтекучей жидкости в двухкомпонентной модели. Если пренебречь коэффициентом теплового расширения (который у гелия аномально мал), то в волне второго звука осциллируют только температура и энтропия, а плотность и давление остаются постоянными. Распространение второго звука не сопровождается переносом вещества.

        Второй звук можно также интерпретировать как колебания концентрации квазичастиц в сверхтекучем гелии. В чистом 4He это колебания в системе ротонов и фононов.

        Существование второго звука было предсказано теоретически Ландау; расчётное значение равнялось 25 м/с. Фактически измеренное значение составляет 19,6 м/с[4].

        Свойства гелия-3

        Жидкий гелий-3 — это ферми-жидкость, то есть жидкость, частицы которой являются фермионами. В таких системах сверхтекучесть может осуществляться при определённых условиях, когда между фермионами имеются силы притяжения, которые приводят к образованию связанных состояний пар фермионов — так называемых куперовских пар (эффект Купера).

        Куперовская пара обладает целым спином, то есть ведёт себя как бозон; поэтому вещество, состоящее из объединённых в куперовские пары фермионов, может переходить в состояние, подобное бозе-конденсату. Сверхтекучесть такого рода осуществляется для электронов в некоторых металлах и носит название сверхпроводимости.

        Аналогичная ситуация имеет место в жидком 3He, атомы которого имеют спин ½ и образуют типичную квантовую ферми-жидкость. Свойства жидкого гелия-3 можно описать как свойства газа квазичастиц-фермионов с эффективной массой примерно в 3 раза большей, чем масса атома 3He. Силы притяжения между квазичастицами в 3He очень малы, лишь при температурах порядка нескольких милликельвинов в 3He создаются условия для образования куперовских пар квазичастиц и возникновения сверхтекучести. Открытию сверхтекучести у 3He способствовало освоение эффективных методов получения низких температур — эффекта Померанчука и магнитного охлаждения. С их помощью удалось выяснить характерные особенности диаграммы состояния 3He при сверхнизких температурах.

        Переход нормальной ферми-жидкости в фазу А представляет собой фазовый переход II рода (теплота фазового перехода равна нулю). В фазе A образовавшиеся куперовские пары обладают спином 1 и отличным от нуля моментом импульса. В ней могут возникать области с общими для всех пар направлениями спинов и моментов импульса. Поэтому фаза А является анизотропной жидкостью. В магнитном поле фаза А расщепляется на две фазы (A1 и A2), каждая из которых также является анизотропной. Переход из сверхтекучей фазы А в сверхтекучую фазу В является фазовым переходом I рода с теплотой перехода около 1,5·10−6 дж/моль. Магнитная восприимчивость 3He при переходе А→В скачком уменьшается и продолжает затем уменьшаться с понижением температуры. Фаза В является, по-видимому, изотропной.

        Хранение и транспортировка

        Как и другие криожидкости, гелий хранят в сосудах Дьюара. Гелий в них всегда хранится под небольшим давлением — за счёт естественного испарения жидкости. Это позволяет в случае небольшой негерметичности не допустить загрязнения гелия. Избыточное давление стравливается через клапан. На практике, так как гелий достаточно дорог, то, чтобы не выпускать газ в атмосферу, на головной части дьюара размещается соединительная часть для подсоединения дьюара к гелиевой сети, по которой газообразный гелий собирается для повторного использования. Как правило, на этом же узле крепится манометр для контроля давления и аварийный клапан.

        Гелиевые дьюары переворачивать нельзя, для переливания содержимого применяют специальные сифоны.

        Гелий имеет очень низкую теплоту испарения (в 20 раз меньше, чем у водорода), но зато высокую теплопроводность. Поэтому к качеству теплоизоляции гелиевых дьюаров предъявляются высокие требования. При повреждении вакуумной изоляции жидкость так бурно вскипает, что дьюар может взорваться. Как правило, для снижения потерь гелия на испарение используется «азотная рубашка» — непосредственно в вакуумной полости сосуда Дьюара расположена ещё одна оболочка, которая охлаждается кипящим жидким азотом (температура 77 К). За счёт этого удается существенно сократить теплообмен между гелием и атмосферой.

        Жидкий гелий перевозят в специальных транспортных сосудах, выпускаемыми промышленно. В СССР и позднее в России выпускались сосуды типа СТГ-10, СТГ-25, СТГ-40 и СТГ-100 ёмкостью 10, 25, 40 и 100 литров, соответственно. Эти сосуды широко используются в российских лабораториях и в настоящее время. Сосуды с жидким гелием должны транспортироваться и храниться в вертикальном положении.

        Применение жидкого гелия

        Жидкий гелий применяется в качестве хладагента для получения и поддержания низких и сверхнизких температур (в основном в научных исследованиях):

        • охлаждение сверхпроводящих магнитов в различных научных, технических и медицинских устройствах, к примеру:
        • использование в криостатах растворения[прояснить];
        • криогенные электрические машины[прояснить].

        Примечания

        Ссылки

        Научно-популярные ресурсы

        Книги, обзорные статьи

        • Сверхтекучий 3He: ранняя история глазами теоретика — нобелевская лекция Э. Дж. Леггетта, УФН, т. 174, № 11, 2003 г.
        • Воловик Г., «Universe in a helium droplet», Oxford University Press, 2004, 529 стр., книга доступна на сайте автора (PDF, 3,5 Мб).

        org-wikipediya.ru