Электромагнитный пистолет — Gauss Gun. Электромагнитный пистолет


Электромагнитный пистолет — Gauss Gun

Пушка Гаусса (англ. Gauss gun, Coil gun, Gauss cannon) — одна из разновидностей электромагнитного ускорителя масс. Названа по имени немецкого учёного Карла Гаусса, заложившего основы математической теории электромагнетизма.

Принцип действияПушка Гаусса состоит из соленоида, внутри которого находится ствол (как правило, из диэлектрика). В один из концов ствола вставляется снаряд (сделанный из ферромагнетика). При протекании электрического тока в соленоиде возникает магнитное поле, которое разгоняет снаряд, «втягивая» его внутрь соленоида. (На концах снаряда при этом образуются полюса симметричные полюсам катушки, из-за чего после прохода центра соленоида снаряд притягивается в обратном направлении, то есть тормозится)- Это распространённое заблуждение. На самом деле снаряд втягивается и ускоряется до самого конца катушки.Для наибольшего эффекта импульс тока в соленоиде должен быть кратковременным и мощным. Как правило, для получения такого импульса используются электрические конденсаторы с высоким рабочим напряжением.Параметры обмотки, снаряда и конденсаторов должны быть согласованы таким образом, чтобы при выстреле к моменту подлета снаряда к середине обмотки ток в последней уже успевал бы уменьшится до минимального значения, то есть заряд конденсаторов был бы уже полностью израсходован. В таком случае КПД одноступенчатой пушки Гаусса будет максимальным. Кпд «однокатушечных» систем растёт с повышением напряжения и увеличением индуктивности катушки.

Преимущества и недостатки Пушка Гаусса в качестве оружия обладает преимуществами, которыми не обладают другие виды стрелкового оружия. Это отсутствие гильз и неограниченность в выборе начальной скорости и энергии боеприпаса, возможность бесшумного выстрела (если скорость достаточно обтекаемого снаряда не превышает скорости звука) в том числе без смены ствола и боеприпаса, относительно малая отдача (равная импульсу вылетевшего снаряда, нет дополнительного импульса от пороховых газов или движущихся частей), теоретически, больша́я надежность и износостойкость, а также возможность работы в любых условиях, в том числе космического пространства. Однако, несмотря на кажущуюся простоту пушки Гаусса и её преимущества, использование её в качестве оружия сопряжено с серьёзными трудностями. Первая трудность — низкий КПД установки. Лишь 1-7 % заряда конденсаторов переходят в кинетическую энергию снаряда. Отчасти этот недостаток можно компенсировать использованием многоступенчатой системы разгона снаряда, но в любом случае КПД редко достигает 27 %. Поэтому пушка Гаусса по силе выстрела проигрывает даже пневматическому оружию. Вторая трудность — большой расход энергии (из-за низкого КПД) и достаточно длительное время накопительной перезарядки конденсаторов, что заставляет вместе с пушкой Гаусса носить и источник питания (как правило, мощную аккумуляторную батарею). Можно значительно увеличить эффективность, если использовать сверхпроводящие соленоиды, однако это потребует мощной системы охлаждения, что значительно уменьшит мобильность пушки Гаусса. Третья трудность (следует из первых двух) — большой вес и габариты установки при её низкой эффективности.Видеоролик. Пушка Гаусса в игре S.T.A.L.K.E.R., в игре Fallout 2 и самодельная реальная пушка Гаусса

www.gradremstroy.ru

Электромагнитный «пистолет» для инъекций - «Хакер»

Схематичное устройство инъектора: магнитная катушка, ствол и ампула с препаратом

Шприц с иголкой считается символом современной медицины, как и боль от укола. Но в скором будущем всё может измениться. Инженеры из Массачусетского технологического института разработали электромагнитный инъектор, который доставляет лекарство в нужное место совершенно безболезненно, незаметно для пациента.

Устройство из МТИ уникально по нескольким параметрам. Во-первых, стартовая скорость лекарства составляет до 340 метров в секунду, то есть около скорости звука. Инъекция осуществляется быстрее чем за миллисекунду. Инъектор с электромагнитным приводом работает на силе Лоренца: маленький мощный магнит с медной обмоткой, если приложить к нему электрический разряд, генерирует мощное поле, которое с высокой скоростью выбрасывает лекарство из дула.

Во-вторых, инъекция препарата осуществляется с высокой точностью — в этом отличие предложенного устройства от предыдущих аналогов, которые используются для вакцинирования с 1960-х годов. Через компьютерный интерфейс врач может контролировать глубину инъекции и точное количество препарата. Сам препарат может заряжаться в пистолет не только в форме жидкости, но и в форме порошка. Предыдущие «пистолеты» работали на пружинах или других механических системах, так что там нельзя было регулировать скорость вылета капли и нельзя было осуществлять инъекции вакцин в виде порошка.

Новое устройство пока не проверяли на людях — только на овцах. Животные не чувствовали «укола» и даже не вздрагивали.

По словам изобретателей, миниатюрный диаметр отверстия позволяет использовать инъектор не только для подкожных инъекций, но также для введения лекарств в сетчатку глаза или через барабанную перепонку в среднее ухо.

xakep.ru

Электромагнитное оружие Википедия

Электромагнитное оружие (ЭМИ) — оружие, в котором для придания начальной скорости снаряду используется магнитное поле, либо энергия электромагнитного излучения используется непосредственно для поражения цели.

В первом случае магнитное поле используется как альтернатива взрывчатым веществам в огнестрельном оружии. Во втором — используется возможность наведения токов высокого напряжения и выведения из строя электрического и электронного оборудования в результате возникающего перенапряжения, либо вызывание болевых эффектов или иных эффектов у человека. Оружие второго типа позиционируется как безопасное для людей и служащее для вывода из строя техники противника[1] или приводящих к небоеспособности живой силы противника[2].; относится к категории оружия нелетального действия.

Французская кораблестроительная компания «DCNS» разрабатывает программу «Advansea» в ходе которой планируется создать к 2025 году полностью электрифицированный боевой надводный корабль с лазерным и электромагнитным вооружением.

Виды электромагнитного оружия

Поражение ЭМИ-оружием ракет и высокоточных боеприпасов

Принцип действия ЭМИ-гранаты

К ЭМИ-оружию уязвимы ракеты с конструктивными элементами следующего вида[3]:

Использование электромагнитного импульса против электроники ракеты за её металлическим корпусом неэффективно[4]. Воздействие возможно по большей части на головку самонаведения, которое может быть велико в основном для ракет с собственным радаром в её качестве.

Электромагнитное оружие применяется для поражения ракет в комплексе активной защиты «Афганит» из танковой платформы Армата и боевом ЭМИ-генераторе Ранец-Е.

Поражение ЭМИ-оружием средств ведения партизанских войн

ЭМИ эффективны против средств ведения партизанских войн, так как бытовая электроника не имеет защиты от ЭМИ.

Наиболее типичные объекты поражения ЭМИ:

  • радиомины и мины с электронными взрывателями, включая традиционные любительские радиоустройства для террористических и диверсионных акций;
  • незащищённые от ЭМИ портативные устройства радиосвязи пехоты;
  • бытовые радиостанции, сотовые телефоны, планшеты, ноутбуки, электронные охотничьи прицелы и тому подобные электронные бытовые приборы.

Защита от ЭМИ оружия

Существует много эффективных средств защиты радаров и электроники от ЭМИ-оружия.[5]

Меры применяются трех категорий:

  1. блокирование входа части энергии электромагнитного импульса
  2. подавление индукционных токов внутри электрических схем быстрым их размыканием
  3. использование электронных устройств нечувствительных к ЭМИ

Средства сброса части или всех энергии ЭМИ на входе в устройство

Как средства защиты от ЭМИ на АФАР радары накладывают «клетки Фарадея» отсекающей ЭМИ за пределами их частот. Для внутренней электроники применяются просто железные экраны.

Кроме этого может быть использован разрядник[6], как средство сброса энергии сразу за антенной.

Средства размыкания цепей при возникновении сильных индукционных токов

Для размыкания цепей внутренней электроники при возникновении сильных индукционных токов от ЭМИ[5] используют

  • стабилитроны — полупроводниковые диоды рассчитанные на работу в режиме пробоя с резким повышением сопротивления;
  • варисторы обладают свойством резко уменьшать своё сопротивление с десятков и (или) тысяч Ом — до единиц Ом при увеличении приложенного к нему напряжения выше пороговой величины.

Электронные устройства, нечувствительные к ЭМИ

Часть электронных устройств неуязвимы для ЭМИ и применяются как средства борьбы с ним:

  • Использование оптического кабеля для передачи сигнала.
  • Использование LTCC-технологий в связи с тем, что разогревом силикатной платы с проводниками внутри до 1000 °С от индукционных токов или как-то иначе такое устройство невозможно повредить, так как собственно в ходе такого «совместного обжига» LTCC-панель и была получена технологически[7]. Следует иметь в виду, что это касается защиты от экстремального нагрева только антенн и проводников, реализованных в виде «дорожек на стеклянной печатной плате», которую из себя представляет LTCC-панель. Напаянные на панель чипы должны иметь защиту корпуса из металла и разрядники, стабилитроны и варисторы на входе сигнала от антенн.

См. также

Примечания

Литература

  • Гуревич В. И. Уязвимости микропроцессорных реле защиты: проблемы и решения. — М.: Инфра-Инженерия., 2014. — 256 с. — ISBN 978-5-9729-0077-0
  • Гуревич В. И. Защита оборудования подстанций от электромагнитного импульса. — М.: Инфра-Инженерия., 2016. — 302 с. — ISBN 978-5-9729-0104-3
  • Гуревич В. И. Электромагнитный импульс высотного ядерного взрыва и защита электрооборудования от него, - М.: Инфра-Инженерия., 2018. - 508 с. - ISBN 978-5-9729-0273-6

Ссылки

wikiredia.ru

Электромагнитное оружие | Социальная сеть работников образования

Содержание

Введение

3

  1. Техника безопасности

4

  1. Принцип действия ускорителя

5

  1. Преимущества и недостатки пушки Гаусса

6

  1. Этапы работы

8

  1. Составные части ускорителя масс

12

  1. Тактико-Технические Характеристики ускорителя

18

Заключение

23

Список литературы

24

Введение

Обладать оружием, которое даже в компьютерных играх можно найти только в лаборатории сумасшедшего ученого или возле временного портала в будущее, – это круто. Наблюдать, как равнодушные к технике люди невольно фиксируют на устройстве взгляд – ради этого стоит потратить время на сборку пушки Гаусса. Я решил  начать  с простейшей конструкции – однокатушечной индукционной пушки  из повсеместно доступных ингредиентов. Итак, чтобы построить пушку Гаусса, прежде всего в  радиомагазине нужно купить несколько конденсаторов с напряжением 350–400 В и общей емкостью 1000–2000 микрофарад, эмалированный медный провод диаметром 0,8 мм, батарейные отсеки для “Кроны” и двух 1,5-вольтовых батареек типа С, тумблер и кнопку.

При сборке электрической цепи необходимо строго выполнять знание техники безопасности т.к обычные 220 вольт могут являться смертельно опасными для человека. Смертельный для жизни ток составляет примерно 100 миллиампер. Сопротивление кожного покрова человека примерно 50 КОм, однако внутреннее сопротивление человека всего на всего 1000 Ом, нетрудно посчитать, что ток при этом будет 220 миллиампер – прямой путь в морг.

  1. Техника безопасности

Познание в общей электротехнике и понимание принципа функционирования тех радиоэлементов, которые собираюсь использовать в своей конструкции просто необходимы. . Если кратковременное общение с 220 вольт зачастую проходит для человека без последствий, то общение с КОНДЕНСАТОРОМ значительной емкости, заряженным на те же 220 вольт легко может закончиться летальным исходом.  Что уж там говорить о конденсаторах на 300 В и более.  Конденсаторы при неправильном обращении с ними могут взрываться.  Перепутал выводы у полярного электролитического конденсатора – взрыв. Превысил номинальное напряжение конденсатора – взрыв. Нагрел заряженный конденсатор до высокой температуры – взрыв. Повредил или деформировал корпус конденсатора – тоже взрыв.  При чем опасен даже не сколько сам взрыв, а сколько пары, которые при этом выделяются. Мощный выброс кипящего электролита при взрыве электролитического конденсатора может привести к потере зрения.  Не рекомендуется располагать различные электронные приборы и магнитные накопители (дискеты, пластиковые карты ) ближе 1 метра рядом с электромагнитной пушкой, из-за создаваемого ей сильного магнитного поля.

  1. Принцип действия

Пушка Гаусса состоит из соленоида, внутри которого находится ствол (как правило, из диэлектрика). В один из концов ствола вставляется снаряд (сделанный из ферромагнетика). При протекании электрического тока в соленоиде возникает магнитное поле, которое разгоняет снаряд, «втягивая» его внутрь соленоида. На концах снаряда при этом образуются полюса симметричные полюсам катушки, из-за чего после прохода центра соленоида снаряд притягивается в обратном направлении, т.е. тормозится.

Для наибольшего эффекта импульс тока в соленоиде должен быть кратковременным и мощным. Как правило, для получения такого импульса используются электрические конденсаторы с высоким рабочим напряжением.

Параметры обмотки, снаряда и конденсаторов должны быть согласованы таким образом, чтобы при выстреле к моменту подлета снаряда к середине обмотки ток в последней, уже успевал бы уменьшится до минимального значения, то есть заряд конденсаторов был бы уже полностью израсходован. В таком случае КПД одноступенчатой пушки Гаусса будет максимальным.

  1. Преимущества и недостатки

Пушка Гаусса в качестве оружия обладает преимуществами, которыми не обладают другие виды стрелкового оружия.

  1. Это отсутствие гильз и
  2. неограниченность в выборе начальной скорости и энергии боеприпаса, а так же скорострельности орудия,
  3. возможность бесшумного выстрела (если скорость снаряда не превышает скорости звука) в том числе без смены ствола и боеприпаса,
  4. относительно малая отдача (равная импульсу вылетевшего снаряда, нет дополнительного импульса от пороховых газов или движущихся частей),
  5. больша́я надежность и износостойкость,
  6. возможность работы в любых условиях, в том числе космического пространства.

Однако, несмотря на кажущуюся простоту пушки Гаусса и её преимущества, использование её в качестве оружия сопряжено с серьёзными трудностями.

Первая трудность — низкий КПД установки. Лишь 1-7 % заряда конденсаторов переходят в кинетическую энергию снаряда. Отчасти этот недостаток можно компенсировать использованием многоступенчатой системы разгона снаряда, но в любом случае КПД редко достигает даже 27 %. Поэтому пушка Гаусса по силе выстрела проигрывает даже пневматическому оружию.

Вторая трудность — большой расход энергии (из-за низкого КПД) и достаточно длительное время перезарядки конденсаторов, что заставляет вместе с пушкой Гаусса носить и источник питания (как правило, мощную аккумуляторную батарею). Можно значительно увеличить эффективность, если использовать сверхпроводящие соленоиды, однако это потребует мощной системы охлаждения, что значительно уменьшит мобильность пушки Гаусса.

Третья трудность (следует из первых двух) — большой вес и габариты установки, при её низкой эффективности.

Таким образом, на сегодняшний день пушка Гаусса не имеет особых перспектив в качестве оружия, так как значительно уступает другим видам стрелкового оружия. Перспективы возможны лишь в будущем, если будут созданы компактные и мощные источники электрического тока и высокотемпературные сверхпроводники (200—300К).

  1. Этапы работы

Главный силовой элемент  пушки – катушка индуктивности. С ее изготовления стоит начать сборку орудия. Возьмите отрезок соломинки длиной 30 мм и две большие шайбы (пластмассовые или картонные), соберите из них бобину с помощью винта и гайки. Начните наматывать на нее эмалированный провод аккуратно, виток к витку (при большом диаметре провода это довольно просто). Будьте внимательны, не допускайте резких перегибов провода, не повредите изоляцию. Закончив первый слой, залейте его суперклеем и начинайте наматывать следующий. Поступайте так с каждым слоем. Всего нужно намотать 12 слоев. Затем можно разобрать бобину, снять шайбы и надеть катушку на длинную соломинку, которая послужит стволом. Один конец соломинки следует заглушить. Готовую катушку легко проверить, подключив ее к 9-вольтовой батарейке: если она удержит на весу канцелярскую скрепку, значит, добились успеха. Можно вставить в катушку соломинку и испытать ее в роли соленоида: она должна активно втягивать в себя отрезок скрепки, а при импульсном подключении даже выбрасывать ее из ствола на 20–30 см.

 

Для формирования мощного электрического импульса как нельзя лучше подходит батарея конденсаторов. Конденсаторы хороши не только большой энергоемкостью, но и способностью отдать всю энергию в течение очень короткого времени, до того как снаряд достигнет центра катушки. Однако конденсаторы необходимо как-то заряжать. К счастью, нужное  зарядное устройство есть в любом фотоаппарате: конденсатор используется там для формирования высоковольтного импульса для поджигающего электрода вспышки. Лучше всего  подходят одноразовые фотоаппараты, потому что конденсатор и «зарядка» – это единственные электрические компоненты, которые в них есть, а значит, достать зарядный контур из них проще простого.

Разборка одноразового фотоаппарата – это этап, на котором стоит начать проявлять осторожность. Вскрывая корпус, старайтесь не касаться элементов электрической цепи: конденсатор может сохранять заряд в течение долгого времени. Получив доступ к конденсатору, первым делом замкните его выводы отверткой с ручкой из диэлектрика. Только после этого можно касаться платы, не опасаясь получить удар током. Удалите с зарядного контура скобы для батарейки, отпаяйте конденсатор, припаяйте перемычку к контактам кнопки зарядки – она нам больше не понадобится. Подготовьте таким образом минимум пять зарядных плат. Обратите внимание на расположение проводящих дорожек на плате: к одним и тем же элементам схемы можно подключиться в разных местах.

 

Подбор емкости конденсаторов – это вопрос компромисса между энергией выстрела и временем зарядки орудия. Можно остановилиться на четырех конденсаторах по 470 микрофарад (400 В), соединенных параллельно. Перед каждым выстрелом в течение примерно минуты ждем сигнала светодиодов на зарядных контурах, сообщающих, что напряжение в конденсаторах достигло положенных 330 В. Ускорить процесс заряда можно, подключая к зарядным контурам по несколько 3-вольтовых батарейных отсеков параллельно. Однако стоит иметь в виду, что мощные батареи типа «С» обладают избыточной силой тока для слабеньких фотоаппаратных схем. Чтобы транзисторы на платах не сгорели, на каждую 3-вольтовую сборку должно приходиться 3–5 зарядных контуров, подключенных параллельно. На нашем орудии к «зарядкам» подключен только один батарейный отсек. Все остальные служат в качестве запасных магазинов.

Правильно собрать пушку поможет принципиальная схема. При сборке высоковольтного контура пользуйтесь проводом сечением не менее миллиметра, для зарядного и управляющего контуров подойдут любые тонкие провода. Проводя эксперименты со схемой, помните: конденсаторы могут иметь остаточный заряд. Прежде чем прикасаться к ним, разряжайте их коротким замыканием.

Процесс стрельбы выглядит так: включаем тумблер питания; дожидаемся яркого свечения светодиодов; опускаем в ствол снаряд так, чтобы он оказался слегка позади катушки; выключаем питание, чтобы при выстреле батарейки не отбирали энергию на себя; прицеливаемся и нажимаем на кнопку спуска. Результат во многом зависит от массы снаряда. С помощью короткого гвоздя с откусанной шляпкой удалось пробить гипсокартонную стену с расстояния в несколько метров.

  1. Составные части магнитного ускорителя масс

Снаряд

Должен обладать высокой магнитной проницаемостью, обычно в качестве материала снаряда используется железо, но допускается и использование ферритовых стержней. Длина снаряда должна быть согласована с длиной обмотки, для достижения максимальной эффективности его масса так же должна быть строго определённой. Перед выстрелом своим передним концом снаряд устанавливается перед началом обмотки внутри трубки.

Трубка и задний ограничитель обмотки

Ствол выполняет две функции - она является несущей конструкцией для намотки соленоида и в то же время служит для придания снаряду заданного направления полета по аналогии со стволом в огнестрельном оружии. Однако в полной мере стволом трубку называть не стоит – в магнитном ускорителе масс стволом для снаряда, в сущности, служит магнитное поле, создаваемое внутри соленоида - снаряд движется в нем не касаясь стенок трубки. Во избежание потерь мощности на кольцевые токи, возникающие в момент выстрела от быстрого переменного магнитного поля, трубка должна быть сделана из непроводящего материала. Задний ограничитель обмотки необходим в связи с тем, что в момент выстрела на обмотку действует импульс отдачи, направленный в сторону, противоположную направлению движения гвоздя. Во избежание сползания обмотки и деформации витков и необходим упор-ограничитель.

Обмотка

Как правило, изготавливается из медного эмалированного провода большого диаметра. Является главным функциональным узлом магнитного ускорителя. Служит для создания мощного магнитного поля для ускорения снаряда. Параметры обмотки (количество витков, толщина провода, длина) рассчитываются или определяются экспериментально для достижения максимального КПД.

 

Конденсатор

Накопитель энергии магнитного ускорителя масс. Электрическая энергия конденсатора в гаусс гане преобразуется в кинетическую энергию снаряда. В одноступенчатых системах, как правило, КПД не превышает 1% - т.е. одна сотая энергии конденсатора преобразуется в кинетическую энергию гвоздя. Наиболее часто в МУ применяются электролитические конденсаторы, обладающие большой емкостью. Кроме того, для увеличения общей энергии ускорителя используют несколько конденсаторов, соединенных между собой.

Ствол для coil gun

Ствол является важной составной частью электромагнитного ускорителя. При этом он должен обладать рядом свойств, некоторые из которых достаточно специфичны.

1). Прочность.

В отличие от обычного огнестрельного оружия, в котором ускорение снаряда достигается давлением горячих пороховых газов, в электромагнитном ускорителе отсутствуют такие факторы воздействия на материал ствола, как высокие температуры и давления (если, конечно, ускоряющие катушки не нагреваются до красна после каждого выстрела). Поэтому прочность ствола у  нее является таким критичным параметром, как у порохового оружия. Тем не менее, при протекании импульсных токов через ускоряющие катушки развиваются механические напряжения, которые при неверном выборе материала ствола или его толщины могут привести к его разрушению.

2). Толщина.

Толщина стенок ствола должна быть минимальна. Это требование вытекает из того факта, что чем плотнее сердечник (снаряд) подогнан по диаметру к внутреннему диаметру ускоряющей катушки, тем больше его потокосцепление с катушкой (т.е. тем большая часть поля, создаваемого катушкой, проходит через снаряд).

3). Электропроводность и ферромагнетизм.

Материал ствола должен быть плохо проводящим и не являться ферромагнетиком. Это требование вытекает из того факта, что проводящий и особенно ферримагнитный материал ствола будет сильно ослаблять переменное магнитное поле, под действием которого в гауссовке  происходит ускорение снаряда.

4). Лёгкость в обработке.

Материал ствола должен легко обрабатываться (пилиться, сверлиться и т.д.), т.к. на нём размещается множество элементов конструкции (ускоряющие катушки, индуктивные или оптические датчики положения и т.д.).

5). Дешевизна и доступность.

Немаловажные факторы, особенно для любительских исследований, ведь приходится перепробовать множество стволов разного калибра и длины. Перечислю несколько видов стволов:

Стеклянные стволы: стволы в виде стеклянной трубки очень часто применяются в любительских исследованиях. Этот выбор обусловлен тем, что стеклянную трубку подходящего диаметра можно найти почти в любой школьной химической лаборатории, не говоря уже о специализированных химических магазинах. Такие трубки, как правило, имеют очень тонкие стенки, что обеспечивает хорошее потокосцепление снаряда и соленоида.

Металлические стволы: металл – самый заманчивый материал для изготовления ствола. Металлическую трубку подходящего диаметра легко достать (на худой конец, заказать у поставщиков), она хорошо обрабатывается,  и она достаточно прочная. Однако, у металлического ствола есть совершено специфический для Coilgun недостаток – он  ослабляет магнитное поле ускоряющих катушек и тем самым снижает и без того невысокий КПД процесса ускорения. Этот эффект особенно сильно проявляется для ферримагнитных стволов (например, из стали) и на высоких частотах (т.е. при высоких скоростях снаряда).

Полимерные стволы: сюда относятся все материалы на основе пластмасс или материалов с полимерной пропиткой (текстолит и т.д.). В самом примитивном проявлении это стволы из обычных шариковых ручек, которые часто применяются начинающими гаусс-ганерами.

На мой взгляд полимерный ствол – самый перспективный для Coilgun (по-крайней мере, для любительских конструкций). Действительно, почти любая пластмасса хорошо поддаётся обработке, является диэлектриком и диамагнетиком. Несколько хуже обстоит дело с прочностью и доступностью, но и здесь есть решения.

  1. Тактико-Технические Характеристики

Оружие, помимо определённой мощности выстрела, которую тоже необходимо обеспечить, подразумевает так же определённую компоновку элементов системы, простоту эксплуатации, надежность и заданные тактико-технические характеристики (ТТХ).

Наиболее остро в конструировании магнитных ускорителей масс, как всегда, стоит проблема получения большой кинетической энергии снаряда – точнее – повышение КПД гауссовки.

Как правило, магнитные ускорители масс имеют КПД не боле 1% - т.е. лишь 1 сотая часть энергии конденсаторов переходит в кинетическую энергию снаряда. Поэтому достаточной для оружия энергией обладают лишь большие стационарные пушки, общей массой от 50 и более килограмм, которые, естественно, совершенно непригодны для использования в качестве ручного оружия. Создатели таких тяжеловесных систем любят снимать на видео процесс пробивания многосантиметровых досок, разнесения в пыль кирпичей, а потом с гордостью показывать это всем кому не попадая, пытаясь показать какое мощное оружие гаусс ган. Но стоит вспомнить о массе пушки, как все восхищение от мощности моментально отпадает! Гауссовка массой 50 кг метает железный гвоздь с кинетической энергией не более 100Дж, в то время, как наш “родной” Пистолет Макарова имеет энергию пули 300Дж, а весит вместе с полным магазином 850 грамм! И это при том при всем, что патроны ПМ-а безнадежно устарели и считаются слабыми, а современные пистолетные патроны придают пуле энергию аж в 450-500Дж!... А что уж там говорить о снайперских винтовках!... Снайперская винтовка СВД с расстояния в 100 метров пробивает на вылет до 36 сосновых досок, толщиной 2,5 см каждая, а полный вес винтовки едва достигает 4 кг.

Поэтому необходимо работать над повышением КПД устройства. На одноступенчатой системе вполне реально получить КПД 4,5%.  Как широко известно, КПД магнитного ускорителя тем выше, чем лучше согласованы параметры соленоида с параметрами конденсаторов и параметрами гвоздя. Т.е. при выстреле к моменту подлета гвоздя к середине обмотки ток в катушке уже близко к нулю и магнитное поле отсутствует, не препятствуя снаряду вылетать из соленоида. Однако на практике получить такое удается редко – малейшее отклонение от теоретического идеала резко снижает КПД.

Остальная энергия конденсаторов, как известно, теряется на активном сопротивлении проводов, а так как удельное сопротивления меди ограничено и постоянно, то уменьшить потери на активном сопротивлении практически нельзя, но все таки возможно за счет варьирования параметров катушки.

Как известно, мощность потерь растет пропорционально квадрату тока. Снаряд ускоряет магнитное поле, величина которого определяется током и индуктивностью катушки. Так как увеличивать ток очень нехорошо, но требуется мощное магнитное поле, да ещё и ограниченное по времени существования, то можно поступить следующим образом.

Длину соленоида можно увеличить, при этом возрастет количество витков и его индуктивность, но так как длина соленоида станет больше, время импульса тоже можно увеличить. При меньшем токе величина магнитного поля будет больше.

Очень хорошо на КПД гауссовки может сказаться использование накладок из магнитопроводящего материала – это даст возможность при увеличении толщины провода и соответственно геометрических размеров катушки сохранить плотность магнитного потока внутри соленоида постоянной. Для этого очень эффективно использовать ферритовые чашечки, которые продаются в любых радиотехнических магазинах.

КПД=Е(КИНЕТ)/Е(КОНД)*100%

   КПД это отношение полезной энергии к затраченной, и умноженный на 100%.

Т.к. у нас Гаусс работает от конденсаторов, получаем (E кин.снаряда / E конденсаторов)*100%.Сперва надо посчитать энергию заряжённых конденсаторов. E=CU²/2. В моём случае, с конденсатором на 300В 800мкФ получилось (0.0008x300x300)/2=36 Джоулей.

А энергия, приобретённая снарядом, вычисляется по формуле  У меня при массе гвоздя 4.5 грамма и его скорости 13 м/с получилось (0.0045*13*13)/2=0.38 Джоулей. Значит КПД=(0.38/36)*100%=1.055%.

Способ расчета скорости движения снаряда:

Померить скорость в домашних условиях можно только косвенно, по высоте, дальности полёта, на глаз. Но для точных вычислений это недопустимо. Измерение скорости пули можно произвести несколькими способами:

Метод 1. Баллистический маятник.

Тяжелая деревяшка подвешенная на нитке (четырех, по нитке с каждого конца).

Методика измерения: стреляешь в деревяшку, смотришь, на сколько она отклоняется, считаешь по формуле приведённой ниже:

Метод 2. Измерение с помощью программы AirSpeed: Bullets speed meter.

Программа предназначена для измерения скорости пули у пневматического (и не тогько) оружия, для этого используется звуковая карта компьютера и специальные датчики, описание изготовления датчиков прилагается в документации.

Метод 3. Механический хронограф

Одна из конструкций механического хронографа представляет собой два диска, закрепленных на одной вращающейся оси. Диски можно изготовить, например, из плотной бумаги и разместить на оси электромотора. При выстреле пуля пробивает сначала первый диск, затем второй. Время движения пули между дисками определяют по величине угла а, на который сместится пулевая пробоина на втором диске относительно пробоины на первом диске. Зная расстояние между дисками и их скорость вращения, скорость полета пули можно вычислить по формуле:

Чем больше скорость вращения дисков, тем выше точность измерения скорости пули.

Заключение

Рассмотрев вопрос о существовании альтернативы взрывчатым веществам в огнестрельном оружии, я могу сделать вывод о том, что в таком качестве могут выступать магнитные ускорители масс.

Во время написания работы я выполнил следующие задачи:

  1. Проанализировал теоретические основы свойств электромагнитных полей
  2. Изучил принцип действия электромагнитных ускорителей
  3. Изготовил действующую модель электромагнитного ускорителя

Перед собой я поставил цель – построить действующую модель ускорителя масс (пушку Гаусса), в результате такая модель была построена. Данная модель может быть использована на уроках в школьном физическом кабинете для демонстрации явления превращения электромагнитной энергии поля в кинетическую энергию массивных тел.

Данная работа дала мне много полезной и очень интересной информации. Лично я приобрел навыки исследовательской и научной работы:

  1. Самостоятельно искал информацию, необходимую для изготовления модели.
  2. Рассчитывал параметры электрической цепи для увеличения к.п.д. установки.
  3. Самостоятельно изготовлял необходимые детали.

В процессе работы я был настойчив в достижении цели, чувствовал ответственность за результат  работы, был требователен к себе и горд за результат своей деятельности.

 

nsportal.ru

Электромагнитное оружие — Википедия

Материал из Википедии — свободной энциклопедии

Электромагнитное оружие (ЭМИ) — оружие, в котором для придания начальной скорости снаряду используется магнитное поле, либо энергия электромагнитного излучения используется непосредственно для поражения цели.

В первом случае магнитное поле используется как альтернатива взрывчатым веществам в огнестрельном оружии. Во втором — используется возможность наведения токов высокого напряжения и выведения из строя электрического и электронного оборудования в результате возникающего перенапряжения, либо вызывание болевых эффектов или иных эффектов у человека. Оружие второго типа позиционируется как безопасное для людей и служащее для вывода из строя техники противника[1] или приводящих к небоеспособности живой силы противника[2].; относится к категории оружия нелетального действия.

Французская кораблестроительная компания «DCNS» разрабатывает программу «Advansea» в ходе которой планируется создать к 2025 году полностью электрифицированный боевой надводный корабль с лазерным и электромагнитным вооружением.

Виды электромагнитного оружия

Видео по теме

Поражение ЭМИ-оружием ракет и высокоточных боеприпасов

Принцип действия ЭМИ-гранаты

К ЭМИ-оружию уязвимы ракеты с конструктивными элементами следующего вида[3]:

Использование электромагнитного импульса против электроники ракеты за её металлическим корпусом неэффективно[4]. Воздействие возможно по большей части на головку самонаведения, которое может быть велико в основном для ракет с собственным радаром в её качестве.

Электромагнитное оружие применяется для поражения ракет в комплексе активной защиты «Афганит» из танковой платформы Армата и боевом ЭМИ-генераторе Ранец-Е.

Поражение ЭМИ-оружием средств ведения партизанских войн

ЭМИ эффективны против средств ведения партизанских войн, так как бытовая электроника не имеет защиты от ЭМИ.

Наиболее типичные объекты поражения ЭМИ:

  • радиомины и мины с электронными взрывателями, включая традиционные любительские радиоустройства для террористических и диверсионных акций;
  • незащищённые от ЭМИ портативные устройства радиосвязи пехоты;
  • бытовые радиостанции, сотовые телефоны, планшеты, ноутбуки, электронные охотничьи прицелы и тому подобные электронные бытовые приборы.

Защита от ЭМИ оружия

Существует много эффективных средств защиты радаров и электроники от ЭМИ-оружия.[5]

Меры применяются трех категорий:

  1. блокирование входа части энергии электромагнитного импульса
  2. подавление индукционных токов внутри электрических схем быстрым их размыканием
  3. использование электронных устройств нечувствительных к ЭМИ

Средства сброса части или всех энергии ЭМИ на входе в устройство

Как средства защиты от ЭМИ на АФАР радары накладывают «клетки Фарадея» отсекающей ЭМИ за пределами их частот. Для внутренней электроники применяются просто железные экраны.

Кроме этого может быть использован разрядник[6], как средство сброса энергии сразу за антенной.

Средства размыкания цепей при возникновении сильных индукционных токов

Для размыкания цепей внутренней электроники при возникновении сильных индукционных токов от ЭМИ[5] используют

  • стабилитроны — полупроводниковые диоды рассчитанные на работу в режиме пробоя с резким повышением сопротивления;
  • варисторы обладают свойством резко уменьшать своё сопротивление с десятков и (или) тысяч Ом — до единиц Ом при увеличении приложенного к нему напряжения выше пороговой величины.

Электронные устройства, нечувствительные к ЭМИ

Часть электронных устройств неуязвимы для ЭМИ и применяются как средства борьбы с ним:

  • Использование оптического кабеля для передачи сигнала.
  • Использование LTCC-технологий в связи с тем, что разогревом силикатной платы с проводниками внутри до 1000 °С от индукционных токов или как-то иначе такое устройство невозможно повредить, так как собственно в ходе такого «совместного обжига» LTCC-панель и была получена технологически[7]. Следует иметь в виду, что это касается защиты от экстремального нагрева только антенн и проводников, реализованных в виде «дорожек на стеклянной печатной плате», которую из себя представляет LTCC-панель. Напаянные на панель чипы должны иметь защиту корпуса из металла и разрядники, стабилитроны и варисторы на входе сигнала от антенн.

См. также

Примечания

Литература

  • Гуревич В. И. Уязвимости микропроцессорных реле защиты: проблемы и решения. — М.: Инфра-Инженерия., 2014. — 256 с. — ISBN 978-5-9729-0077-0
  • Гуревич В. И. Защита оборудования подстанций от электромагнитного импульса. — М.: Инфра-Инженерия., 2016. — 302 с. — ISBN 978-5-9729-0104-3

Ссылки

wikipedia.green

Россия превыше всего: Русское электромагнитное оружие

Когда говорят об электромагнитном оружии, чаще всего имеют в виду выведение из строя электрического и электронного оборудования наведением на него электромагнитных импульсов (ЭМИ). Действительно, возникающие в результате мощного импульса в цепях электроники токи и напряжение, приводят к её выходу из строя. И чем больше его мощность, тем на большем расстоянии приходят в негодность любые «признаки цивилизации».

Одним из самых мощных источников ЭМИ является ядерное оружие. Например, американское ядерное испытание в Тихом океане в 1958 году вызвало на Гавайских островах нарушение радио- и телевещания и перебои с освещением, а в Австралии - нарушение радионавигации на 18 часов. В 1962 году, когда на высоте 400 км. американцы взорвали 1,9 Мт заряд – «скончались» 9 спутников, надолго пропала радиосвязь на обширном участке Тихого океана. Поэтому электромагнитный импульс — один из поражающих факторов ядерного оружия.

Но ядерное оружие применимо только в глобальном конфликте, а возможности ЭМИ очень полезны в более прикладном военном деле. Поэтому неядерные средства поражения ЭМИ начали проектироваться почти сразу вслед за ядерным оружием.

Конечно, генераторы ЭМИ существуют давно. Но создать достаточно мощный (а значит, «дальнобойный») генератор не так-то просто технически. Ведь, по сути, это прибор, преобразующий электрическую или другую энергию в электромагнитное излучение высокой мощности. И если у ядерного боеприпаса нет проблем с первичной энергетикой, то в случае использования электричества вместе с источниками питания (напряжения) это будет скорее сооружение, чем оружие. В отличие от ядерного заряда, доставить его «в нужное время, в нужное место» более проблематично.

И вот в начале 90-х стали появляться сообщения о неядерных «электромагнитных бомбах» (E-Bomb). Как всегда, источником стала западная пресса, а поводом – операция американцев против Ирака 1991 года. «Новое секретное супероружие», действительно, применялось для подавления и вывода из строя иракских систем ПВО и связи.

Однако у нас подобное оружие предлагал ещё в 1950-х годах академик Андрей Сахаров (ещё до того, как стал «миротворцем»). Кстати, на вершине творческой деятельности (которая приходится не на период диссидентства, как многие думают) у него была масса оригинальных идей. Например, в годы войны он был одним из создателей оригинального и надёжного прибора для контроля бронебойных сердечников на патронном заводе.

А в начале 50-х он предлагал «смыть» восточное побережье США волной гигантского цунами, которую можно инициировать серией мощных морских ядерных взрывов на значительном удалении от берегов. Правда, командование ВМФ, увидев «ядерную торпеду», изготовленную для этой цели, наотрез отказалось принимать её на вооружение из соображений гуманизма - да ещё и наорало на учёного многопалубным фотским матом. По сравнению с этой идеей электромагнитная бомба - действительно «гуманное оружие».

В предложенном Сахаровым неядерном боеприпасе мощный ЭМИ образовывался в результате сжатия магнитного поля соленоида взрывом обычного взрывчатого вещества. Благодаря высокой плотности химической энергии во взрывчатом веществе это избавляло от необходимости использовать источник электрической энергии для преобразования в ЭМИ. К тому же таким способом можно было получить мощный ЭМИ. Правда, это же делало прибор одноразовым, поскольку он разрушался инициирующим взрывом. У нас этот тип устройств стал называться взрывомагнитным генератором (ВМГ).

Собственно, до этой же идеи додумались американцы с британцами в конце 70-х годов, в результате чего и появились боеприпасы, испытанные в боевой обстановке в 1991 году. Так что ничего «нового» и «суперсекретного» в этом виде техники нет.

У нас (а Советский Союз занимал ведущие позиции в области физических исследований) подобные устройства находили применение в сугубо мирных научных и технологических областях - таких, как транспортировка энергии, ускорение заряженных частиц, нагрев плазмы, накачка лазеров, радиолокация высокого разрешения, модификация материалов и т. д. Конечно, велись исследования и в направлении военного применения. Изначально ВМГ использовались в ядерных боеприпасах для систем нейтронного подрыва. Но были и идеи использования «генератора Сахарова» как самостоятельного оружия.

Но прежде чем говорить о применении ЭМИ-оружия, следует сказать, что Советская Армия готовилась воевать в условиях применения ядерного оружия. То есть в условиях действующего на технику поражающего фактора ЭМИ. Поэтому вся военная техника разрабатывалась с учётом защиты от этого поражающего фактора. Способы различны - начиная от простейшего экранирования и заземления металлических корпусов аппаратуры и заканчивая применением специальных предохранительных устройств, разрядников и устойчивой к ЭМИ архитектурой аппаратуры.

Так что говорить, будто от этого «чудо-оружия» нет защиты, тоже не стоит. Да и радиус действия у ЭМИ-боеприпасов не такой большой, как в американской прессе - излучение распространяется во всех направлениях от заряда, и плотность его мощности убывает пропорционально квадрату расстояния. Соответственно, убывает и воздействие. Конечно, вблизи точки подрыва защитить технику сложно. Но говорить об эффективном воздействии на километры не приходится – для достаточно мощных боеприпасов это будут десятки метров (что, правда, больше зоны поражения фугасных боеприпасов аналогичного размера). Здесь достоинство такого оружия – оно не требует точечного попадания – обращается в недостаток.

Со времён «генератора Сахарова» подобные устройства постоянно совершенствовались. Занимались их разработкой множество организаций: Институт высоких температур АН СССР, ЦНИИХМ, МВТУ, ВНИИЭФ и много других. Устройства стали достаточно компактны, чтобы стать боевыми частями средств поражения (от тактических ракет и артиллерийских снарядов до диверсионных средств). Улучшались их характеристики. Кроме взрывчатки, в качестве источника первичной энергии стали использовать ракетное топливо. ВМГ стали применяться как один из каскадов для накачки генераторов СВЧ-диапазона. Несмотря на ограниченные возможности по поражению целей, эти средства занимают промежуточное положение между средствами огневого поражения и средствами радиоэлектронного подавления (которые, по сути, тоже являются электромагнитным оружием).

О конкретных образцах известно мало. Например, Александр Борисович Прищепенко описывает успешные опыты по срыву атаки противокорабельных ракет П-15 с помощью подрыва компактных ВМГ на дистанциях до 30 метров от ракеты. Это уже, скорее, средство ЭМИ-защиты. Он же описывает «ослепление» магнитных взрывателей противотанковых мин, которые, находясь на дистанции до 50 метров от места подрыва ВМГ, на значительное время переставали срабатывать.

В качестве ЭМИ-боеприпаса испытывались не то что «бомбы» -- реактивные гранаты для ослепления комплексов активной защиты (КАЗ) танков! В противотанковом гранатомёте РПГ-30 – два ствола: один основной, другой малого диаметра. 42-миллиметровая ракета «Атропус», оснащённая электромагнитной боевой частью, выстреливается в направлении танка чуть ранее кумулятивной гранаты. Ослепив КАЗ, она позволяет последней спокойно полететь мимо «задумавшейся» защиты.

Немного отвлекаясь, скажу, что это довольно актуальное направление. Придумали КАЗ мы («Дрозд» ставился ещё на Т-55АД). В дальнейшем появились «Арена» и украинский «Заслон». Сканируя окружающее машину пространство (обычно в миллиметровом диапазоне), они отстреливают в направлении подлетающих противотанковых гранат, ракет и даже снарядов небольшие поражающие элементы, способные изменить их траекторию или привести к преждевременной детонации. С оглядкой на наши разработки, на Западе, в Израиле и Юго-восточной Азии тоже стали появляться такие комплексы: «Trophy», «Iron Fist», «EFA», «KAPS», «LEDS-150», «AMAP ADS», «CICS», «SLID» и другие. Сейчас они получают широчайшее распространение и начинают штатно устанавливаться не только на танки, но даже на лёгкие бронемашины. Противодействие им становится неотъемлемой частью борьбы с бронетехникой и защищёнными объектами. А компактные электромагнитные средства подходят для этой цели как нельзя лучше.

Но вернёмся к электромагнитному оружию. Кроме взрывомагнитных устройств, существуют излучатели ЭМИ направленного и всенаправленного действия, использующие в качестве излучающей части различные антенные устройства. Это уже не одноразовые устройства. Их можно применять на значительном расстоянии. Они делятся на стационарные, мобильные и компактные переносные. Мощные стационарные излучатели ЭМИ большой энергии, требуют строительства специальных сооружений, высоковольтных генераторных установок, антенных устройств больших размеров. Но и возможности их весьма существенны. Передвижные излучатели сверхкоротких ЭМИ с максимальной частотой повторения до 1 кГц, можно размещать в автофургонах или автоприцепах. Они также имеют значительную дальность действия и достаточную для своих задач мощность. Переносные устройства чаще всего используются для различных задач обеспечения безопасности, вывода из строя средств связи, разведки и взрывных устройств на небольших расстояниях.

О возможностях отечественных мобильных установок можно судить по представленному на выставке вооружений ЛИМА-2001 в Малайзии экспортному варианту комплекса «Ранец-E». Он выполнен на шасси МАЗ-543, имеет массу около 5 тонн, обеспечивает гарантированное поражение электроники наземной цели, летательного аппарата или управляемого боеприпаса на дальностях до 14 километров и нарушения в её работе на расстоянии до 40 км.

Из несекретных разработок известны также изделия МНИРТИ -- «Снайпер-М» «И-140/64» и «Гигаватт», выполненные на базе автомобильных прицепов. Они, в частности, используются для отработки средств защиты радиотехнических и цифровых систем военного, специального и гражданского назначения от поражения ЭМИ.

Ещё немного следует сказать о средствах радиоэлектронного противодействия. Тем более, что они тоже относятся к радиочастотному электромагнитному оружию. Это чтобы не создалось впечатления, что мы как-то не способны бороться с высокоточным оружием и «всемогущими беспилотниками и боевыми роботами». Все эти модные и дорогостоящие штуки имеют весьма уязвимое место – электронику. Даже относительно простые средства способны надёжно блокировать сигналы GPS и радиовзрыватели, без которых эти системы не обходятся.

ВНИИ «Градиент» серийно производит станция помех радиовзрывателям снарядов и ракет СПР-2 «Ртуть-Б», выполненные на базе БТР и штатно состоящие на вооружении. Аналогичные устройства производит Минское «КБ РАДАР». А поскольку радиовзрывателями сейчас оснащены до 80% западных снарядов полевой артиллерии, мин и неуправляемых реактивных снарядов и почти все высокоточные боеприпасы, - эти достаточно простые средства позволяют защитить от поражения войска в т. ч. непосредственно в зоне контакта с противником.

Концерн «Созвездие» производит серию малогабаритных (носимых, возимых, автономных) передатчиков помех серии РП-377. С их помощью можно глушить сигналы GPS, а в автономном варианте, укомплектованном источниками питания, ещё и расставив передатчики на некоторой площади, ограниченной только количеством передатчиков.

Сейчас готовится экспортный вариант более мощной системы подавления GPS и каналов управления оружием. Она уже является системой объектовой и площадной защиты от высокоточных средств поражения. Построена она по модульному принципу, который позволяет варьировать площади и объекты защиты. Когда её покажут, каждый уважающий себя бедуин сможет защитить своё поселение от «высокоточных методов демократизации».

Ну и возвращаясь к новым физическим принципам оружия, нельзя не вспомнить разработки НИИРП (ныне подразделение концерна ПВО «Алмаз-Антей») и Физико-технического института им. Иоффе. Исследуя воздействие мощного СВЧ-излучения с земли на воздушные объекты (цели), специалисты этих учреждений неожиданно получили локальные плазменные образования, которые получались на пересечении потоков излучения от нескольких источников. При контакте с этими образованиями воздушные цели претерпевали огромные динамические перегрузки и разрушались.

Согласованная работа источников СВЧ-излучения позволяла быстро менять точку фокусировки, то есть производить перенацеливание с огромной скоростью или сопровождать объекты практически любых аэродинамических характеристик. Опыты показали, что воздействие эффективно даже по боевым блокам МБР. По сути, это уже даже не СВЧ-оружие, а боевые плазмоиды.

К сожалению, когда в 1993 году коллектив авторов представил проект системы ПВО/ПРО основанной на этих принципах на рассмотрение государства, Борис Ельцин сразу предложил совместную разработку американскому президенту. И хотя сотрудничество по проекту (слава Богу!) не состоялось, возможно, именно это подтолкнуло американцев к созданию на Аляске комплекса HAARP (High freguencu Active Auroral Research Program).

Проводимые на нём с 1997 года исследования, декларативно носят "сугубо мирный характер". Однако никакой гражданской логики в исследованиях воздействия СВЧ излучения на ионосферу Земли и воздушные объекты, лично я не усматриваю. Остаётся только надеяться на традиционную для американцев провальную историю масштабных проектов.

Ну а нам следует порадоваться, что к традиционно сильным позициям в области фундаментальных исследований, прибавилась заинтересованность государства в оружии на новых физических принципах. Программы по нему сейчас носят приоритетный характер.

rusblog31.blogspot.com

Оружие будущего: Электромагнитная бомба и пушка

В последнее время в открытой печати все чаще появляются публикации об электромагнитном оружии (ЭМО). Материалы об ЭМО пестрят различными сенсационными, а порой и откровенно антинаучными «выкладками» и экспертными мнениями, часто настолько полярными, что складывается впечатление, что люди говорят вообще о разных вещах. Электромагнитное оружие называют и «технологиями будущего» и одной из «величайших обманок» в истории. Но истина, как это часто бывает, лежит где-то посередине…

Электромагнитное оружие (ЭМО) — оружие, в котором для придания начальной скорости снаряду используется магнитное поле, либо энергия электромагнитного излучения используется непосредственно для поражения или нанесения повреждений технике и живой силе противника. В первом случае магнитное поле используется как альтернатива взрывчатым веществам в огнестрельном оружии. Во втором — используется возможность наведения токов высокого напряжения и электромагнитных импульсов высокой частоты для выведения из строя электрического и электронного оборудования противника. В третьем — применяется эм-излучение определенной частоты и напряженности с целью вызывание болевых или иных (страха, паники, слабости) эффектов у человека. ЭМ оружие второго типа позиционируется как безопасное для людей и служащее для вывода из строя техники и средств связи. Электромагнитное оружие третьего типа, приводящее к временной небоеспособности живой силы противника, относится к категории оружия нелетального действия.

Электромагнитное оружие, разрабатываемое в настоящее время, можно разделить на несколько типов, различающихся по принципу использования свойств электромагнитного поля:

 

— Электромагнитная пушка (ЭМП)

— Система активного «отбрасывания» (САО)

— «Глушилки» — различные виды систем радиоэлектронной борьбы (РЭБ)

— Электромагнитные бомбы (ЭБ)

 

В первой части цикла статей, посвященных электромагнитному оружию, речь пойдет об электромагнитных пушках. Ряд стран, например США, Израиль и Франция активно проводят разработки в этой области, сделав ставку на использование электромагнитно-импульсных систем для генерации кинетической энергии беозарядов.

У нас, в России, пошли другим путем — основной упор сделали не на электронные пушки, как США или Израиль, а на системы радиоэлектронной борьбы и электромагнитные бомбы. Например, как утверждают специалисты, работающие над проектом «Алабуга», отработка технологии уже минула стадию полевых испытаний, в данный момент идет стадия доводки опытных образцов в целях увеличить мощность, точность и дальность излучения. Сегодня боевая часть «Алабуги», разорвавшись на высоте 200-300 метров, способна отключить всю радио- и электронную аппаратуру противника в радиусе 4 км и оставить войсковое подразделение масштаба батальон/полк без средств связи, управления и наведения огня, превратив всю имеющуюся технику противника в «груду металлолома». Может быть именно эту систему имел в виду Владимир Владимирович, когда недавно говорил, о «секретном оружии», которое Россия может применить в случае войны? Впрочем, подробнее про систему «Алабуга» и других новейших российских разработках в области ЭМО речь пойдет в следующем материале. А сейчас, давайте, вернемся к электромагнитным пушкам, наиболее известном и «раскрученном» в СМИ типе электромагнитного оружия.

 

 

 

Может возникнуть резонный вопрос — зачем вообще нужны ЭМ-пушки, разработка которых требует огромных затрат времени и ресурсов? Дело в том, что существующие артиллерийские системы (на основе порохов и взрывчатых веществ), по оценкам экспертов и ученых, достигли своего предела — скорость выпущенного с их помощью снаряда ограничена 2,5 км/сек. Для того, чтобы увеличить дальнобойность артиллерийских систем и кинетическую энергию заряда (а следовательно, и поражающую способность боевого элемента) необходимо увеличить начальную скорость снаряда до 3-4 км/сек, а существующие системы на это не способны. Для этого нужны принципиально новые решения.

Идея создания электромагнитной пушки зародилась практически одновременно в России и Франции в разгар Первой мировой войны. В её основу легли труды немецкого исследователя Йоганна Карла Фридриха Гаусса, который разработал теорию электромагнетизма, воплотившуюся в необычное устройство — электромагнитную пушку. Тогда, в начале ХХ века всё ограничилось опытными образцами, показавшими, к тому же, довольно посредственные результаты. Так французский опытный образец ЭМП смог разогнать 50-граммовый снаряд лишь до скорости 200 м/сек, что ни шло ни в какое сравнение с существовавшими на тот момент пороховыми артиллерийскими системами. Её российский аналог — «магнитно-фугальная пушка» и вовсе осталась лишь «на бумаге», — дальше чертежей дело не пошло. Всё дело в особенностях данного вида вооружения. Пушка Гаусса стандартной конструкции состоит из соленоида (катушки) с расположенным внутри него стволом из диэлектрического материала.

Пушка Гаусса заряжается снарядом из ферромагнетика. Чтобы заставить снаряд двигаться, на катушку подаётся электрический ток, создающий магнитное поле, благодаря действию которого снаряд «втягивается» в соленоид, — и скорость снаряда на выходе из «ствола» тем больше, чем мощнее сгенерированный электромагнитный импульс. В настоящее время ЭМ-пушки Гаусса и Томпсона, вследствие ряда принципиальных (и на данный момент неустранимых) недостатков, не рассматриваются с точки зрения практического применения, основным видом ЭМ-пушек, разрабатываемых для постановки на вооружение, являются «рельсотроны».

 

 

 

В состав рельсотрона входят мощный источник питания, коммутационная и управляющая аппаратура и два электропроводящих «рельса» длиной от 1 до 5 метров, которые являются своего рода «электродами», расположенными друг от друга на расстоянии примерно 1 см. В основу действия рельсотрона положен кумулятивный эффект, когда энергия электромагнитного поля взаимодействует с энергией плазмы, которая образуется в результате «сгорания» специальной вставки в момент подачи высокого напряжения. В нашей стране об электромагнитных пушках заговорили в 50-е годы, когда началась гонка вооружений, и тогда же начались работы по созданию ЭМП — «сверхоружия», способного в корне изменить расстановку сил в противостоянии с США. Советским проектом руководил выдающийся физик академик Л. А. Арцимович, один из ведущих мировых специалистов по изучению плазмы. Именно он заменил громоздкое название «электродинамический ускоритель массы» на всем известное сегодня — «рельсотрон». Разработчики рельсотронов сразу с толкнулись серьезной проблемой: электромагнитный импульс должен быть настолько мощным, чтобы возникла ускоряющая сила, способная разогнать снаряд до скорости, как минимум 2М (около 2,5 км/с), и вместе с тем настолько кратковременным, чтобы снаряд не успел «испариться» или разлететься на куски. Поэтому снаряд и рельс должны обладать как можно более высокой электрической проводимостью, а источник тока — как можно большей электрической мощностью и как можно меньшей индуктивностью. В данный момент эта фундаментальная проблема, проистекающая из принципа действия рельсотрона, до конца не устранена, но вместе с тем разработаны инженерные решения, способные до определенной степени нивелировать ее негативные последствия и создать действующие прототипы ЭМ-пушки рельсотронного типа.

 

В США с начала двухтысячных идут лабораторные испытания 475-мм рельсотроной пушки, разработанной компаниями General Atomics и BAE Systems. Первые залпы из «пушки будущего», как ее уже окрестили в ряде СМИ, показали довольно обнадёживающие результаты. Снаряд массой 23-кг вылетал из ствола со скоростью, превышающей 2200 м/сек, что позволило бы поражать цели на расстоянии до 160 км. Невероятная кинетическая энергия поражающих элементов электромагнитных орудий делает боевые части снарядов, по сути, ненужными, так как сам снаряд при попадании в цель производит разрушения, сравнимые с тактической ядерной боеголовкой.

 

 

 

После доводки опытного образца рельсотрон планировали установить на скоростной корабль JHSV Millinocket. Однако планы эти отложили до 2020 года, так как с установкой ЭМП именно на боевые корабли возник ряд принципиальных сложностей, устранить которые пока не удалось.

 

Та же судьба постигла и ЭМ-пушку на передовом американском эсминце «Zumwalt». В начале 90-х годов вместо артиллерийской системы 155 калибра на перспективных кораблях типа DD(X) / GG(X) планировалось устанавливать электромагнитную пушку, но потом от этой идеи решили отказаться. В том числе потому, что при стрельбе из ЭМП пришлось бы на время отключать большую часть электроники эсминца, в том числе системы ПВО и ПРО, а также останавливать ход корабля и системы жизнеобеспечения, иначе мощности энергосистемы не хватает для обеспечения стрельбы. К тому же ресурс ЭМ-пушки, которая испытывалась на эсминце, оказался крайне невелик, — всего несколько десятков выстрелов, после чего ствол выходит из строя из-за огромных магнитных и температурных перегрузок. Данную проблему решить пока не удалось. Исследования и испытания, а точнее сказать, «освоение бюджета», по программе разработки электромагнитного оружия для эсминцев типа DD(X) в данный момент продолжаются, но вряд ли ЭМП с теми характеристиками, которые заявлялись на старте данной программы, появится на вооружении армии США в обозримой перспективе. 

 

Есть ли у электромагнитных пушек будущее? Безусловно. И вместе с тем, не стоит ожидать, что уже завтра ЭМП заменят привычные нам артиллерийские системы. Многие ученые и эксперты в начале 80-х годов ХХ века всерьез заявляли, что не пройдет и 30-ти лет, как лазерное оружие изменит «лицо войны» до неузнаваемости. Но заявленный срок вышел, а мы до сих пор не видим на вооружении армий мира ни бластеров, ни лазерных пушек, ни генераторов силовых полей. Все это пока остается фантастикой и темой для футуристических дискуссий, хотя работы в данном русле ведутся, и по ряду направлений достигнут серьезный прогресс. Но порой между открытием и серийным образцом проходят долгие десятилетия, а бывает и так, что разработка, поначалу казавшаяся необычайно перспективной, в итоге совершенно не оправдывает ожидания, становясь очередной «технологией будущего», так и не ставшей «реальностью». И какая судьба ждет электромагнитное оружие — покажет только время!

 

Андрей Князев.

Понравился наш сайт? Присоединяйтесь или подпишитесь (на почту будут приходить уведомления о новых темах) на наш канал в МирТесен!

zagopod.com